On The Multiscale Structure and Morphology of PVDF‐HFP@MOF Membranes in The Scope of Water Remediation Applications

Author:

Valverde Ainara12ORCID,de Fernandez‐de Luis Roberto1,Salazar Hugo1,Gonçalves Bruna F.1,King Stephen3,Almásy László4,Kriechbaum Manfred5,Laza José M.2,Vilas‐Vilela José L.2,Martins Pedro M.67,Lanceros‐Mendez Senentxu18,Porro José M.18,Petrenko Viktor I.18

Affiliation:

1. BCMaterials Basque Center for Materials Applications and Nanostructures UPV/EHU Science Park Leioa 48940 Spain

2. Macromolecular Chemistry Group (LABQUIMAC) Department of Physical Chemistry Faculty of Science and Technology University of the Basque Country (UPV/EHU) Barrio Sarriena s/n 48940 Leioa, Spain Bilbao 48013 Spain

3. ISIS Neutron and Muon Facility Science & Technology Facilities Council Rutherford Appleton Laboratory Didcot OX11 0QX UK

4. Institute for Energy Security and Environmental Safety Centre for Energy Research Budapest 1121 Hungary

5. Institute of Inorganic Chemistry Graz University of Technology Graz 8010 Austria

6. Centre of Molecular and Environmental Biology (CBMA) University of Minho Braga 4710‐057 Portugal

7. Institute for Research and Innovation on Bio‐Sustainability (IB‐S) University of Minho Braga 4710‐057 Portugal

8. IKERBASQUE Basque Foundation for Science Bilbao 48009 Spain

Abstract

AbstractPoly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP) is a highly versatile polymer used for water remediation due to its chemical robustness and processability. By incorporating metal‐organic frameworks (MOFs) into PVDF‐HFP membranes, the material can gain metal‐adsorption properties. It is well known that the effectiveness of these composites removing heavy metals depends on the MOF's chemical encoding and the extent of encapsulation within the polymer. In this study, it is examined how the micro to nanoscale structure of PVDF‐HFP@MOF membranes influences their adsorption performance for CrVI. To this end, the micro‐ and nanostructure of PVDF‐HFP@MOF membranes are thoroughly studied by a set of complementary techniques. In particular, small‐angle X‐ray and neutron scattering allow to precisely describe the nanostructure of the polymer‐MOF complex systems, while scanning microscopy and mercury porosimetry give a clear insight into the macro and mesoporosity of the system. By correlating nanoscale structural features with the adsorption capacity of the MOF nanoparticles, different degrees of full encapsulation‐based on the PVDF‐HFP processing and structuration from the macro to nanometer scale are observed. Additionally, the in situ functionalization of MOF nanoparticles with cysteine is investigated to enhance their adsorption toward HgII. This functionalization enhanced the adsorption capacity of the MOFs from 8 to 30 mg·g−1.

Funder

Eusko Jaurlaritza

Fundação para a Ciência e a Tecnologia

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3