Bioceramics in the CaMgSi2O6–Li2O System: A Glass‐Ceramic Strategy for Excellent Mechanical Strength and Enhanced Bioactivity by Spontaneous Elemental Redistribution

Author:

Tseng Yu‐Sheng1,Su Yun‐Han1,Chen Chia‐Lin1,Zhang Ji2,Wang Chih‐Kuang3,Hanaor Dorian Amir Henry24,Chen Wen‐Fan1ORCID

Affiliation:

1. Institute of Medical Science and Technology National Sun Yat‐Sen University Kaohsiung 80424 Taiwan

2. School of Materials Science and Engineering UNSW Sydney Sydney NSW 2052 Australia

3. Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung 80708 Taiwan

4. Chair of Advanced Ceramic Materials Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany

Abstract

AbstractA novel glass‐ceramic strategy for synthesizing mixed phase diopside (CaMgSi2O6)–lithium oxide (Li2O) bioceramics with excellent mechanical strength, superior biodegradation resistance, low environmental pH impact, enhanced bioactivity, and reasonable biocompatibility is developed for biomedical applications. The substitution of Li2O for MgO in CaMgSi2O6 stimulates the formation of secondary phases: CaSiO3, Li2Si2O5, SiO2, Li2SiO3, and Li2Ca2Si5O13. The evolution of CaSiO3 improves the surface hydroxyapatite (HAp) formation but lowers the mechanical strength and biological resistance, while the amorphous Li2Si2O5 phase tremendously reinforces the bioceramics by densifying the microstructure, indicating the simultaneous enhancement of bioactivity, mechanical strength, and durability. The promoted HAp formation is induced by the elemental redistribution where Mg elements are concentrated in large CaMgSi2O6 grains embedded in Li2Si2O5 amorphous matrix, which hinders the Mg2+ release and its readsorption by HAp. The cell viability is affected by Li2O substitution because of the high‐dose Li+. In the current work, Li0.25 (25 mol% Li2O) has the highest hardness (700 Hv as sintered and 197 Hv after simulated body fluid soaking), lowest weight loss (≈0.6 wt%), lowest pH variation (≈8.1), efficient HAp formation, and reasonable cell viability (70.5%), demonstrating its remarkable potential for bone implant applications due to the synergistic structural densification and biological improvement.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3