Evaluation of the Effects of Power‐Frequency Magnetic Field Exposure on B‐Cell Differentiation From Human Hematopoietic Stem/Progenitor Cells

Author:

Takahashi Masayuki1ORCID,Furuya Naoko2

Affiliation:

1. Sustainable System Research Laboratory Central Research Institute of Electric Power Industry (CRIEPI) Chiba Japan

2. CERES Chiba Japan

Abstract

The causal relationship between exposure to power‐frequency magnetic fields (MFs) and childhood leukemia has long been controversial. The most common type of childhood leukemia is acute B‐lymphoblastic leukemia caused by abnormal proliferation of B cells in the early differentiation process. Here, we focused on B‐cell early differentiation and aimed to evaluate the effects of exposing cells to power‐frequency MF. First, we optimized an in vitro differentiation protocol of human hematopoietic stem/progenitor cells (HSPCs) to B‐cell lineages. Following validation of the responsiveness of the protocol to additional stimulations and the uniformity of the experimental conditions, human HSPCs were continuously exposed to 300 mT of 50 Hz MF for 35 days of the differentiation process. These experiments were performed in a blinded manner. The percentages of myeloid or lymphoid cells and their degree of differentiation from pro‐B to immature‐B cells in the MF‐exposed group showed no significant changes compared with those in the control group. Furthermore, the expression levels of recombination‐activating gene (RAG)1 and RAG2 in the B cells were also similar to those in the control group. These results indicate that exposure to 50 Hz MF at 300 mT does not affect the human B‐cell early differentiation from HSPCs. © 2023 The Authors. Bioelectromagnetics published by Wiley Periodicals LLC on behalf of Bioelectromagnetics Society.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Physiology,General Medicine,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3