Pulsed Electromagnetic Fields Improved Peripheral Nerve Regeneration After Delayed Repair of One Month

Author:

Keyan Zhu12,Liqian Zhang1,Xinzhong Xu1,Juehua Jing1,Chungui Xu1ORCID

Affiliation:

1. Department of Orthopaedics The Second Affiliated Hospital of Anhui Medical University Hefei China

2. Institute of Orthopaedics, Research Center for Translational Medicine The Second Affiliated Hospital of Anhui Medical University Hefei China

Abstract

The goal of this study was to determine if postoperative pulsed electromagnetic fields (PEMFs) could improve the neuromuscular rehabilitation after delayed repair of peripheral nerve injuries. Thirty‐six Sprague–Dawley rats were randomly divided into sham group, control group, and PEMFs group. The sciatic nerves were transected except for the control group. One month later, the nerve ends of the former two groups were reconnected. PEMFs group of rats was subjected to PEMFs thereafter. Control group and sham group received no treatment. Four and 8 weeks later, morphological and functional changes were measured. Four and eight weeks postoperatively, compared to sham group, the sciatic functional indices (SFIs) of PEMFs group were higher. More axons regenerated distally in PEMFs group. The fiber diameters of PEMFs group were larger. However, the axon diameters and myelin thicknesses were not different between these two groups. The brain‐derived neurotrophic factor and vascular endothelial growth factor expressions were higher in PEMFs group after 8 weeks. Semi‐quantitative IOD analysis for the intensity of positive staining indicated that there were more BDNF, VEGF, and NF200 in PEMFs group. It's concluded that PEMFs have effect on the axonal regeneration after delayed nerve repair of one month. The upregulated expressions of BDNF and VEGF may play roles in this process. © 2023 Bioelectromagnetics Society.

Funder

Anhui Medical University

National Natural Science Foundation of China

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Physiology,General Medicine,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3