Differences in the Optical Response of MSU and CPP Crystals During Magnetic Orientation: Possibility of Diagnosing Gout and Pseudogout

Author:

Takeuchi Yuka1ORCID,Yoshikawa Ryotaro1,Mitsui Yoshifuru2,Iwasaka Masakazu3,Matsuda Mizushi1,Hamasaki Atom4

Affiliation:

1. Muroran Institute of Technology Muroran Japan

2. Graduate School of Science and Engineering Kagoshima University Kagoshima Japan

3. RIND Hiroshima University Higashi‐Hiroshima Japan

4. Faculty of Science Shinshu University Matsumoto Japan

Abstract

Pseudogout is crystalline arthritis. It has a similar clinical picture to that of gout, and it is difficult to distinguish the two diseases using conventional analysis methods. However, it is important to identify the different crystals responsible for these two cases because the treatment strategies are different. In a previous study, we reported magnetic orientation of monosodium urate (MSU) crystals, which are the causative agent of gout, at the permanent magnet level. In this study, we investigated the effect of an applied magnetic field on calcium pyrophosphate (CPP) crystals, which are the causative agent of pseudogout, and the difference in the magnetic responses of CPP and MSU crystals. We found that the CPP crystals were oriented in a magnetic field on milli‐Tesla order because of the anisotropy of the diamagnetic susceptibility. In addition, the CPP crystals exhibited different anisotropic magnetic properties from those of MSU crystals, which led to a characteristic difference between the orientations of the two crystals. That is, we found that the causative agents of gout and pseudogout responded differently to a magnetic field. This report suggests that the discrimination between CPP and MSU by optical measurements is possible by application of magnetic fields appropriately. © 2023 Bioelectromagnetics Society.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Physiology,General Medicine,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Controlling the growth of yeast by culturing in high magnetic fields;Journal of Magnetism and Magnetic Materials;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3