T‐YOLO: a lightweight and efficient detection model for nutrient buds in complex tea‐plantation environments

Author:

Bai Bingyi12ORCID,Wang Junshu3,Li Jianlong4,Yu Long1,Wen Jiangtao5,Han Yuxing6ORCID

Affiliation:

1. College of Electronic Engineering South China Agricultural University Guangzhou China

2. Guangdong Laboratory for Lingnan Modern Agriculture South China Agricultural University Guangzhou China

3. School of robotics Guangdong Open University Guangzhou China

4. Tea Research Institute Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization Guangzhou China

5. Ningbo Institute of Digital Twin Eastern Institute of Technology Ningbo China

6. Shenzhen International Graduate School Tsinghua University Shenzhen China

Abstract

AbstractBACKGROUNDQuick and accurate detection of nutrient buds is essential for yield prediction and field management in tea plantations. However, the complexity of tea plantation environments and the similarity in color between nutrient buds and older leaves make the location of tea nutrient buds challenging.RESULTSThis research presents a lightweight and efficient detection model, T‐YOLO, for the accurate detection of tea nutrient buds in unstructured environments. First, a lightweight module, C2fG2, and an efficient feature extraction module, DBS, are introduced into the backbone and neck of the YOLOv5 baseline model. Second, the head network of the model is pruned to achieve further lightweighting. Finally, the dynamic detection head is integrated to mitigate the feature loss caused by lightweighting. The experimental data show that T‐YOLO achieves a mean average precision (mAP) of 84.1%, the total number of parameters for model training (Params) is 11.26 million (M), and the number of floating‐point operations (FLOPs) is 17.2 Giga (G). Compared with the baseline YOLOv5 model, T‐YOLO reduces Params by 47% and lowers FLOPs by 65%. T‐YOLO also outperforms the existing optimal detection YOLOv8 model by 7.5% in terms of mAP.CONCLUSIONThe T‐YOLO model proposed in this study performs well in detecting small tea nutrient buds. It provides a decision‐making basis for tea farmers to manage smart tea gardens. The T‐YOLO model outperforms mainstream detection models on the public dataset, Global Wheat Head Detection (GWHD), which offers a reference for the construction of lightweight and efficient detection models for other small target crops. © 2024 Society of Chemical Industry.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3