vOARiability: Interobserver and intermodality variability analysis in OAR contouring from head and neck CT and MR images

Author:

Podobnik Gašper1,Ibragimov Bulat12,Peterlin Primož3,Strojan Primož3,Vrtovec Tomaž1

Affiliation:

1. Faculty of Electrical Engineering University of Ljubljana Ljubljana Slovenia

2. Department of Computer Science University of Copenhagen Copenhagen Denmark

3. Institute of Oncology Ljubljana Ljubljana Slovenia

Abstract

AbstractBackgroundAccurate and consistent contouring of organs‐at‐risk (OARs) from medical images is a key step of radiotherapy (RT) cancer treatment planning. Most contouring approaches rely on computed tomography (CT) images, but the integration of complementary magnetic resonance (MR) modality is highly recommended, especially from the perspective of OAR contouring, synthetic CT and MR image generation for MR‐only RT, and MR‐guided RT. Although MR has been recognized as valuable for contouring OARs in the head and neck (HaN) region, the accuracy and consistency of the resulting contours have not been yet objectively evaluated.PurposeTo analyze the interobserver and intermodality variability in contouring OARs in the HaN region, performed by observers with different level of experience from CT and MR images of the same patients.MethodsIn the final cohort of 27 CT and MR images of the same patients, contours of up to 31 OARs were obtained by a radiation oncology resident (junior observer, JO) and a board‐certified radiation oncologist (senior observer, SO). The resulting contours were then evaluated in terms of interobserver variability, characterized as the agreement among different observers (JO and SO) when contouring OARs in a selected modality (CT or MR), and intermodality variability, characterized as the agreement among different modalities (CT and MR) when OARs were contoured by a selected observer (JO or SO), both by the Dice coefficient (DC) and 95‐percentile Hausdorff distance (HD95).ResultsThe mean (±standard deviation) interobserver variability was 69.0 ± 20.2% and 5.1 ± 4.1 mm, while the mean intermodality variability was 61.6 ± 19.0% and 6.1 ± 4.3 mm in terms of DC and HD95, respectively, across all OARs. Statistically significant differences were only found for specific OARs. The performed MR to CT image registration resulted in a mean target registration error of 1.7 ± 0.5 mm, which was considered as valid for the analysis of intermodality variability.ConclusionsThe contouring variability was, in general, similar for both image modalities, and experience did not considerably affect the contouring performance. However, the results indicate that an OAR is difficult to contour regardless of whether it is contoured in the CT or MR image, and that observer experience may be an important factor for OARs that are deemed difficult to contour. Several of the differences in the resulting variability can be also attributed to adherence to guidelines, especially for OARs with poor visibility or without distinctive boundaries in either CT or MR images. Although considerable contouring differences were observed for specific OARs, it can be concluded that almost all OARs can be contoured with a similar degree of variability in either the CT or MR modality, which works in favor of MR images from the perspective of MR‐only and MR‐guided RT.

Funder

Novo Nordisk Fonden

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3