Chemical‐treated sisal fiber reinforcement in red mud composites: Advancing mechanical strength and environmental sustainability

Author:

J. Aravind Kumar1,Sankaran Sakthivel2,Veerasimman Arumugaprabu3ORCID,Marimuthu Uthayakumar3ORCID,Palani Geetha4,Rajendran Sundarakannan4ORCID,Shanmugam Vigneshwaran5ORCID

Affiliation:

1. Department of Energy and Environmental Engineering, Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences Chennai India

2. Department of Biomedical Engineering Kalasalingam Academy of Research and Education Krishnankoil India

3. Department of Mechanical Engineering Kalasalingam Academy of Research and Education Krishnankoil India

4. Institute of Agricultural Engineering Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences Chennai India

5. Department of Mechanical Engineering Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences Chennai India

Abstract

AbstractThe use of industrial waste red mud in polymer composites promotes environmental sustainability by mitigating the environmental impacts associated with landfill disposal. Previous research by the authors on red mud sisal fiber composites resulted in increased strength; it is expected that the strength can be increased further through fiber treatment. As a result, the current study sought to examine the effects of chemical‐treated sisal fiber reinforcement on the mechanical properties of red mud composites. Alkaline treatment and silane treatment were both used as chemical treatment methods. Red mud was added in three different weight percentages, and composites were built using the compression molding method and tested for hardness, tensile strength, flexural strength, and impact strength. The findings indicate that the strength of the composite increases with the incorporation of treated fibers, silane‐treated 30% red mud composites showed a maximum hardness of around 92 shore D. The tensile strength of the composites containing 20% red mud and treated with silane was the highest, reaching ca. 63 MPa. This significant increase in strength was attributed to the formation of strong interfacial bonding between the red mud, fiber, and matrix. Furthermore, the silane‐treated 20 wt% red mud composites have the highest flexural strength (ca. 244 MPa) and impact strength (ca. 26 J/m). However, increasing the red mud content above 20 wt% resulted in decreased tensile, flexural, and impact strength due to poor bond development, and red mud agglomeration. The findings of this study are beneficial for the design and development of composites based on red mud, as well as for promoting sustainable waste management practices.Highlights Red mud composites achieve superior mechanical strength. Chemical treatment enhances sisal fiber reinforcement. Sustainable waste management promoted through composite utilization. Strong interfacial bonding improves composite performance.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3