Rapid Production Nasal Osteotomy Simulators With Multi‐Modality Manufacturing: 3D Printing, Casting, and Molding

Author:

Tumlin Parker1,Sunyecz Ian1,Cui Ruifeng1,Armeni Mark1,Freiser Monika E.1

Affiliation:

1. Department of Otolaryngology West Virginia University Morgantown West Virginia USA

Abstract

AbstractObjectiveTo expand and improve upon previously described nasal osteotomy models with the goals of decreasing cost and production time while ensuring model fidelity. To assess change in participant confidence in their understanding of and ability to perform nasal osteotomies following completion of the simulation course.Study DesignProspective study.SettingSimulation training course for otolaryngology residents at West Virginia University.MethodsA combined methodology of 3D printing, silicone molding, and resin casting was used to design a nasal osteotomy model to address material issues such as print delamination. Multiple models were then used in a simulation lab on performing nasal osteotomies. Model utility and impact on participant confidence was assessed at baseline, postlecture, and postsimulation lab.ResultsUsing a combined manufacturing methodology, we achieved a production time reduction of 97.71% and a cost reduction of 82.02% for this polyurethane resin nasal osteotomy model relative to a previously described osteotomy model. Participants in the simulation course were noted to have a significant improvement in confidence in their understanding of and ability to perform nasal osteotomies from baseline and postlecture and also from postlecture and postsimulation lab (P < .05 for all).ConclusionBy incorporating multiple manufacturing modalities (molding and casting) in addition to 3D printing, this study achieved a large reduction in both production time and cost in fabrication of a nasal osteotomy simulator and addressed material limitations imposed by fused deposition modeling printers. This design methodology serves as an example on how these barriers may be addressed in unrelated simulation projects. Model fidelity was improved with addition of a silicone soft tissue midface. Improvement in participant confidence was noted following completion of the simulation lab.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3