Understanding the pore structure evolution of polyethylene separator with dissipative particle dynamics simulation

Author:

Wang Hao1,Wu Zonglin1,Lu Yue1,Zhang Hang2ORCID,Cheng Guang1ORCID,Liu Gaojun3,Bai Yaozong3

Affiliation:

1. College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing China

2. Department of Applied Physics Aalto University Espoo Finland

3. Sinoma Lithium Battery Separator Co. Ltd Zaozhuang China

Abstract

AbstractThe commercialized lithium‐ion battery separators are mass‐produced by mixing ultra‐high molecular weight polyethylene (UHMWPE) and paraffin oil (PO). The dissipative particle dynamics method is utilized to investigate the extrinsic factors (shear rate and cooling rate) and the intrinsic factors (the molecular chain length) on the microstructure of the UHMWPE‐PO mixture. For the mixture with UHMWPE possessing the same chain length, the high shear rate promoted a lower porosity (~28%) and smaller pores. In contrast, the slow shearing led to a high porosity (~40%) and larger pores. For the mixture with UHMWPE possessing short and long chains, the shear rate hardly affects the porosity and the pore size: the porosity was kept at ~30%, and the pore size was reduced by ~35% compared to the model with the same‐chain‐length UHMWPE. The cooling rate after shearing is the dominant factor in determining the porosity and pore size: the fast cooling raised the porosity by ~33% but hardly increased the pore size, while the slow cooling raised the porosity by ~74%, and the pore size by ~105%. The current study provided a deep understanding of the pore structure evolution in separator processing.Highlights The effects of processing parameters on the pore structures are numerically illustrated. MD simulation and rheometer measurement assist DPD interaction parameters calibration for UHMWPE and PO. The low shear rate leads to a higher porosity and pore size. At the high shear rate, short UHMWPE chains reduce porosity but do not increase pore size. The fast‐cooling process slightly increases the porosity while keeping the pore size.

Funder

Academy of Finland

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Materials Chemistry,Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3