Fitting a stochastic model of intensive care occupancy to noisy hospitalization time series during the COVID‐19 pandemic

Author:

Awasthi Achal1,Minin Volodymyr M.2,Huang Jenny3,Chow Daniel4,Xu Jason13ORCID

Affiliation:

1. Department of Biostatistics and Bioinformatics Duke University Durham North Carolina USA

2. Department of Statistics University of California, Irvine Irvine California USA

3. Department of Statistical Science Duke University Durham North Carolina USA

4. School of Medicine University of California, Irvine Irvine California USA

Abstract

Intensive care occupancy is an important indicator of health care stress that has been used to guide policy decisions during the COVID‐19 pandemic. Toward reliable decision‐making as a pandemic progresses, estimating the rates at which patients are admitted to and discharged from hospitals and intensive care units (ICUs) is crucial. Since individual‐level hospital data are rarely available to modelers in each geographic locality of interest, it is important to develop tools for inferring these rates from publicly available daily numbers of hospital and ICU beds occupied. We develop such an estimation approach based on an immigration‐death process that models fluctuations of ICU occupancy. Our flexible framework allows for immigration and death rates to depend on covariates, such as hospital bed occupancy and daily SARS‐CoV‐2 test positivity rate, which may drive changes in hospital ICU operations. We demonstrate via simulation studies that the proposed method performs well on noisy time series data and apply our statistical framework to hospitalization data from the University of California, Irvine (UCI) Health and Orange County, California. By introducing a likelihood‐based framework where immigration and death rates can vary with covariates, we find, through rigorous model selection, that hospitalization and positivity rates are crucial covariates for modeling ICU stay dynamics and validate our per‐patient ICU stay estimates using anonymized patient‐level UCI hospital data.

Funder

National Science Foundation of Sri Lanka

Publisher

Wiley

Subject

Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3