Tiny niche terrain induces gully headcut retreat

Author:

Wang Chao1,Cai Chongfa2ORCID,Deng Yusong1ORCID

Affiliation:

1. Forestry College Guangxi University Nanning China

2. Resources and Environment College Huazhong Agricultural University Wuhan China

Abstract

AbstractGully erosion damages land resources and endangers human productivity and life, making it a key issue in global research on soil erosion nowadays. Gully headcut retreat (GHR) is the main form of gully erosion. Tiny concave features can be found in many retreating gully heads worldwide, and they are referred to as “niche terrain” in this study. To investigate the association between niche terrain and GHR, relevant research was reviewed on niches and stability analysis of gully heads with niches was modelled and analysed. Studies have shown that not all niches worldwide are identical due to regional differences in internal material–external environmental conditions. Special soil properties, joints, and cracks are the internal material conditions that lead to the formation of niche. External conditions include climate conditions, vegetation conditions, and topography. Water is the driving force for the formation of niche, while vegetation and topography are key factors. Niches can be regarded as the initial stage of GHR in areas where gully erosion is intense. In general, GHR is a composite cyclical process dominated by hydraulic erosion in the early stage and gravitational erosion in the late stage, including niche formation, inward concave formation, free face formation, overhanging soil collapse, and niche reformation. In this study, a model of gully head stability is applied, and it is found that the stability‐based factor of safety decreases exponentially with increasing niche height and crack depth, increases exponentially with increasing niche angle, and decreases quadratically with increasing catchment slope. Summarizing the common characteristics of niche terrains worldwide can facilitate the study of the evolution of gully erosion globally.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3