Potential benefits of Rehmanniae Radix after ancient rice‐steaming process in promotion of antioxidant activity in rats' health

Author:

Zhang Ying1,Wu Meng‐xi1,Li Hong‐mei23,Sun Jianhui2,Huang Lu‐qi1,Yuan Yuan1ORCID

Affiliation:

1. National Resource Center for Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China

2. Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing China

3. State Key Laboratory of Dao‐di Herbs China Academy of Chinese Medical Sciences Beijing China

Abstract

AbstractRice steam processed product of Rehmanniae Radix (RSRR), one of the processed products of Rehmanniae Radix (RR), is popular as an herbal medicine and food. However, the health‐promoting effects and mechanisms of RSRR are still unclear. In this study, 10‐week‐old Sprague–Dawley female rats were treated with different processed products of RR. No organ coefficient differences were observed between RSRR and the control group, indicating that RSRR did not cause damage to the rats. Compared with other RR products, superoxide dismutase, glutathione, and catalase levels were significantly higher and malondialdehyde levels were significantly lower in the RSRR group, indicating that RSRR exerted a better antioxidant effect. Gene expression analysis showed that hemoglobin genes (Hba‐a1, Hba‐a2, Hbb‐bs, Hbb, Hbq1b, Hbb‐b1, and LOC103694857) may be potential biomarkers to evaluate the antioxidant effect of RSRR. Antioxidation‐related signaling pathways in GO annotation, including cellular oxidant detoxification, hydrogen peroxide metabolic process, hemoglobin complex, and oxygen binding signaling pathways were significantly enriched, indicating these pathways may represent the antioxidant mechanism of RSRR. To explore the main active compounds primarily responsible for the antioxidant activity of RSRR, UPLC‐Q‐TOF‐MS was used and six components (catalpol, rehmannioside A, rehmannioside D, melittoside, ajugol, and verbascoside) were identified in rat serum. Catalpol and rehmannioside A were predicted to be the major active components by network pharmacology. These results suggested that RSRR exhibits antioxidant activity and has health‐promoting properties. This study provides a scientific basis for the antioxidant mechanism and clinical use of RSRR.

Publisher

Wiley

Subject

Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3