WheTLHLoc 4W: Small‐scale inspection ground mobile robot with two tracks, two rotating legs, and four wheels

Author:

Bruzzone Luca1ORCID,Nodehi Shahab Edin2ORCID,Fanghella Pietro1ORCID

Affiliation:

1. DIME Department University of Genova Genova GE Italy

2. Scuola Superiore Sant'Anna BioRobotics Institute Università di Pisa Pontedera PI Italy

Abstract

AbstractWheTLHLoc 4W is the second version of a hybrid leg–wheel–track small‐scale ground mobile robot, developed for surveillance and inspection applications. It differs from its predecessor, WheTLHLoc 2W, in two main aspects: the number of wheels (four instead of two), and the new leg design. The overall size of the robot varies depending on the configuration: 500 × 420 × 140 mm (length × width × height) in tracked mode with lowered legs, 315 × 420 × 310 mm in tracked mode with raised legs, and 430 × 420 × 260 mm in wheeled mode. The robot is sufficiently small to explore narrow spaces, both indoors and outdoors, switching between wheeled locomotion on compact surfaces and tracked locomotion on irregular and yielding terrain. Due to its small length, the robot can stand on one tread of a stair. Nevertheless, it is capable of climbing stairs, and the step height limit has been augmented from 165 mm to 180 mm (+9.1%) with respect to the first version, keeping constant the robot overall size. This enhancement has been achieved through a mechanical redesign of the two rotating legs: each leg now features a pair of smaller wheels, actuated by the same actuator through a gear train, instead of a single larger wheel. The significant increase in the maximum step height expands the robot's capabilities for indoor environments, as stairs with a rise higher than 180 mm are extremely uncommon. The paper discusses the mechanical design of WheTLHLoc 4W, the trajectory planning for step/stair climbing, and provides an analytical comparison between the novel architecture and the first version in terms of stability against overturn and slippage. These analytical results are then experimentally verified. The findings demonstrate that the new leg design not only increases the maximum step height (+9.1%), but also reduces the minimum friction coefficient required for successful stair climbing (−19.1% for the maximum step).

Publisher

Wiley

Reference41 articles.

1. An optional passive/active transformable wheel-legged mobility concept for search and rescue robots

2. A Hybrid Tracked-Wheeled Multi-Directional Mobile Robot

3. Boston Dynamics. (2023). Available from:https://www.bostondynamics.com[Accessed 31st August 2023].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3