An enhanced cross‐sectional HIV incidence estimator that incorporates prior HIV test results

Author:

Bannick Marlena1ORCID,Donnell Deborah23,Hayes Richard4,Laeyendecker Oliver56,Gao Fei23ORCID

Affiliation:

1. Department of Biostatistics University of Washington Seattle Washington USA

2. Biostatistics, Bioinformatics and Epidemiology Program Fred Hutchinson Cancer Center Seattle Washington USA

3. Public Health Sciences Division Fred Hutchinson Cancer Center Seattle Washington USA

4. Department of Infectious Disease Epidemiology London School of Hygiene and Tropical Medicine London England UK

5. School of Medicine Johns Hopkins University Baltimore Maryland USA

6. Division of Intramural Research National Institute of Allergy and Infectious Diseases Baltimore Maryland USA

Abstract

Incidence estimation of HIV infection can be performed using recent infection testing algorithm (RITA) results from a cross‐sectional sample. This allows practitioners to understand population trends in the HIV epidemic without having to perform longitudinal follow‐up on a cohort of individuals. The utility of the approach is limited by its precision, driven by the (low) sensitivity of the RITA at identifying recent infection. By utilizing results of previous HIV tests that individuals may have taken, we consider an enhanced RITA with increased sensitivity (and specificity). We use it to propose an enhanced estimator for incidence estimation. We prove the theoretical properties of the enhanced estimator and illustrate its numerical performance in simulation studies. We apply the estimator to data from a cluster‐randomized trial to study the effect of community‐level HIV interventions on HIV incidence. We demonstrate that the enhanced estimator provides a more precise estimate of HIV incidence compared to the standard estimator.

Funder

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3