A novel synthetic sRNA promoting protein overexpression in cell‐free systems

Author:

Tanniche Imen12ORCID,Nazem‐Bokaee Hadi13,Scherr David M.1,Schlemmer Sara4,Senger Ryan S.14ORCID

Affiliation:

1. Department of Biological Systems Engineering Virginia Tech Blacksburg Virginia USA

2. School of Plant & Environmental Sciences Virginia Tech Blacksburg Virginia USA

3. CSIRO, Black Mountain Science & Innovation Park Canberra Australia

4. Department of Chemical Engineering Virginia Tech Blacksburg Virginia USA

Abstract

AbstractBacterial small RNAs (sRNAs) that regulate gene expression have been engineered for uses in synthetic biology and metabolic engineering. Here, we designed a novel non‐Hfq‐dependent sRNA scaffold that uses a modifiable 20 nucleotide antisense binding region to target mRNAs selectively and influence protein expression. The system was developed for regulation of a fluorescent reporter in vivo using Escherichia coli, but the system was found to be more responsive and produced statistically significant results when applied to protein synthesis using in vitro cell‐free systems (CFS). Antisense binding sequences were designed to target not only translation initiation regions but various secondary structures in the reporter mRNA. Targeting a high‐energy stem loop structure and the 3′ end of mRNA yielded protein expression knock‐downs that approached 70%. Notably, targeting a low‐energy stem structure near a potential RNase E binding site led to a statistically significant 65% increase in protein expression (p < 0.05). These results were not obtainable in vivo, and the underlying mechanism was translated from the reporter system to achieve better than 75% increase in recombinant diaphorase expression in a CFS. It is possible the designs developed here can be applied to improve/regulate expression of other proteins in a CFS.

Funder

National Science Foundation

Publisher

Wiley

Subject

Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3