Crayfish population size under different routes of pathogen transmission

Author:

Koivu‐Jolma Mikko1ORCID,Kortet Raine2ORCID,Vainikka Anssi2,Kaitala Veijo3

Affiliation:

1. Department of Physics, Faculty of Science University of Helsinki Helsinki Finland

2. Department of Environmental and Biological Sciences University of Eastern Finland Joensuu Finland

3. Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland

Abstract

AbstractWe present an epidemiological model for the crayfish plague, a disease caused by an invasive oomycete Aphanomyces astaci, and its general susceptible freshwater crayfish host. The pathogen shows high virulence with resulting high mortality rates in freshwater crayfishes native to Europe, Asia, Australia, and South America. The crayfish plague occurrence shows complicated dynamics due to the several types of possible infection routes, which include cannibalism and necrophagy. We explore this complexity by addressing the roles of host cannibalism and the multiple routes of transmission through (1) environment, (2) contact, (3) cannibalism, and (4) scavenging of infected carcasses. We describe a compartment model having six classes of crayfish and a pool of crayfish plague spores from a single nonevolving strain. We show that environmental transmission is the decisive factor in the development of epidemics. Compared with a pathogen‐free crayfish population, the presence of the pathogen with a low environmental transmission rate, regardless of the contact transmission rate, decreases the crayfish population size with a low risk of extinction. Conversely, a high transmission rate could drive both the crayfish and pathogen populations to extinction. High contact transmission rate with a low but nonzero environmental transmission rate can have mixed outcomes from extinction to large healthy population, depending on the initial values. Scavenging and cannibalism have a relevant role only when the environmental transmission rate is low, but scavenging can destabilize the system by transmitting the pathogen from a dead to a susceptible host. To the contrary, cannibalism stabilizes the dynamics by decreasing the proportion of infected population. Our model provides a simple tool for further analysis of complex host parasite dynamics and for the general understanding of crayfish disease dynamics in the wild.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3