Mesenchymal stem cells paracrine proteins from three‐dimensional dynamic culture system promoted wound healing in third‐degree burn models

Author:

Wang Yingwei12ORCID,Wu Jiaxin2ORCID,Chen Jiamin2,Lu Cheng2,Liang Jinchao2,Shan Yingyi2,Liu Jie2,Li Qi2,Miao Liang3,He Mu3,Wang Xiaoying4,Zhang Jianhua5ORCID,Wu Zheng2ORCID

Affiliation:

1. Department of Ophthalmology The First Affiliated Hospital of Jinan University Guangzhou China

2. Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology Jinan University Guangzhou China

3. Burn plastic surgery Longgang Central Hospital Shenzhen China

4. Department of Biomedical Engineering Jinan University Guangzhou China

5. Special Wards The First Affiliated Hospital of Jinan University Guangzhou China

Abstract

AbstractRecovery of skin function remains a significant clinical challenge for deep burns owing to the severe scar formation and poor appendage regeneration, and stem cell therapy has shown great potential for injured tissue regeneration. Here, a cell‐free therapy system for deep burn skin was explored using mesenchymal stem cell paracrine proteins (MSC‐PP) and polyethylene glycol (PEG) temperature‐sensitive hydrogels. A three‐dimensional (3D) dynamic culture system for MSCs' large‐scale expansion was established using a porous gelatin microcarrier crosslinked with hyaluronic acid (PGM‐HA), and the purified MSC‐PP from culture supernatant was characterized by mass spectrometric analysis. The results showed the 3D dynamic culture system regulated MSCs cell cycle, reduced apoptosis, and decreased lactic acid content, and the MSC‐PP produced in 3D group can promote cell proliferation, migration, and adhesion. The MSC‐PP + PEG system maintained stable release in 28 days of observation in vitro. The in vivo therapeutic efficacy was investigated in the rabbit's third‐degree burn model, and saline, PEG, MSC‐PP, and MSC‐PP + PEG treatments groups were set. The in vivo results showed that the MSC‐PP + PEG group significantly improved wound healing, inhibited scar formation, and facilitated skin appendage regeneration. In conclusion, the MSC‐PP + PEG sustained‐release system provides a potentially effective treatment for deep burn skin healing.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3