Tolerability, acceptability, and reproducibility of topical STAR particles in human subjects

Author:

Kim Youngeun1ORCID,Jung Jae Hwan12ORCID,Tadros Andrew R.1,Prausnitz Mark R.1ORCID

Affiliation:

1. School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta Georgia USA

2. Department of Pharmaceutical Engineering Dankook University Cheonan Republic of Korea

Abstract

AbstractTopical delivery to treat dermatological disease is constrained by low skin permeability to most drugs due to the stratum corneum barrier. STAR particles containing microneedle protrusions can be topically applied on the skin to create micropores that dramatically increase skin permeability, even to water‐soluble compounds and macromolecules. This study addresses the tolerability, acceptability, and reproducibility of STAR particles rubbed on the skin at multiple pressures and after multiple applications to human subjects. One‐time STAR particle application at pressures between 40 and 80 kPa showed that skin microporation and erythema directly correlated with increased pressure, and 83% of subjects reported STAR particles to be comfortable at all pressures. Repeated application of STAR particles for 10 consecutive days at 80 kPa showed that skin microporation (~0.5% of skin area), erythema (low‐to‐moderate), and comfort with self‐administration (75%) were similar over the course of the study. Comfort of sensations associated with STAR particles increased from 58% to 71% during the study, and familiarity with STAR particles increased from 12.5% to 50% of subjects reporting STAR particle application not feeling different from other skin products. This study demonstrates that topically applied STAR particles were well tolerated and highly acceptable after application at various pressures and repeated daily use. These findings further suggest that STAR particles offer a safe and reliable platform to enhance cutaneous drug delivery.

Funder

Georgia Research Alliance

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3