Affiliation:
1. School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta Georgia USA
2. Department of Pharmaceutical Engineering Dankook University Cheonan Republic of Korea
Abstract
AbstractTopical delivery to treat dermatological disease is constrained by low skin permeability to most drugs due to the stratum corneum barrier. STAR particles containing microneedle protrusions can be topically applied on the skin to create micropores that dramatically increase skin permeability, even to water‐soluble compounds and macromolecules. This study addresses the tolerability, acceptability, and reproducibility of STAR particles rubbed on the skin at multiple pressures and after multiple applications to human subjects. One‐time STAR particle application at pressures between 40 and 80 kPa showed that skin microporation and erythema directly correlated with increased pressure, and 83% of subjects reported STAR particles to be comfortable at all pressures. Repeated application of STAR particles for 10 consecutive days at 80 kPa showed that skin microporation (~0.5% of skin area), erythema (low‐to‐moderate), and comfort with self‐administration (75%) were similar over the course of the study. Comfort of sensations associated with STAR particles increased from 58% to 71% during the study, and familiarity with STAR particles increased from 12.5% to 50% of subjects reporting STAR particle application not feeling different from other skin products. This study demonstrates that topically applied STAR particles were well tolerated and highly acceptable after application at various pressures and repeated daily use. These findings further suggest that STAR particles offer a safe and reliable platform to enhance cutaneous drug delivery.
Funder
Georgia Research Alliance
Subject
Pharmaceutical Science,Biomedical Engineering,Biotechnology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献