Complex analytic dependence on the dielectric permittivity in ENZ materials: The photonic doping example

Author:

Kohn Robert V.1ORCID,Venkatraman Raghavendra1ORCID

Affiliation:

1. Courant Institute of Mathematical Sciences New York University New York NY USA

Abstract

AbstractMotivated by the physics literature on “photonic doping” of scatterers made from “epsilon‐near‐zero” (ENZ) materials, we consider how the scattering of time‐harmonic TM electromagnetic waves by a cylindrical ENZ region is affected by the presence of a “dopant” in which the dielectric permittivity is not near zero. Mathematically, this reduces to analysis of a 2D Helmholtz equation  with a piecewise‐constant, complex valued coefficient a that is nearly infinite (say with ) in . We show (under suitable hypotheses) that the solution u depends analytically on δ near 0, and we give a simple PDE characterization of the terms in its Taylor expansion. For the application to photonic doping, it is the leading‐order corrections in δ that are most interesting: they explain why photonic doping is only mildly affected by the presence of losses, and why it is seen even at frequencies where the dielectric permittivity is merely small. Equally important: our results include a PDE characterization of the leading‐order electric field in the ENZ region as , whereas the existing literature on photonic doping provides only the leading‐order magnetic field.

Funder

National Science Foundation

Simons Foundation

Publisher

Wiley

Subject

Applied Mathematics,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3