Comparison of additive main effect–multiplicative interaction model and factor analytic model for genotypes ordination from multi‐environment trials

Author:

Bruno Cecilia I.1ORCID,Balzarini Mónica1ORCID

Affiliation:

1. Grupo de Estadística y Biometría vinculado, Unidad de Fitopatología y Modelización Agrícola (UFyMA), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Estadística y Biometría. Facultad de Ciencias Agropecuarias Universidad Nacional de Córdoba Córdoba Argentina

Abstract

AbstractAn additive main effects and multiplicative interaction (AMMI) model is used to explore the genotype × environment interaction (GEI) in complete multi‐environmental trials. This model orders genotypes (G) according to their performance across environments (E) on a vectorial plane generated by the first two axes of a principal component analysis (AMMI‐biplot). Alternatively, interaction terms can be regarded as random effects, which can be predicted from linear mixed models using a factor analytic (FA) covariance structure for the GEI terms. Here, an FA‐biplot was obtained by plotting the G and E scores derived from the FA mixed model with complete and incomplete data. The aim of this work was to compare AMMI‐biplot with FA‐biplot for balanced data and then show the impact of the imbalance on the FA‐biplot. The G ordinations were assessed in four scenarios generated using datasets of 3 consecutive years obtained from comparative wheat trials conducted under a complete random block design in different environments across the Argentine network of cultivar assessment. For each scenario, G with the lowest performance in the third year were deleted, one by one, from all sites to generate a scenario with missing G. Although we used different statistical procedures to obtain AMMI‐biplot and FA‐biplot, they showed the same interaction pattern in the case of up to 50% of G dropped from all E in the last year of the multiyear trials. We conclude that the FA‐biplot yields a robust G ordination even when with incomplete datasets.

Publisher

Wiley

Reference38 articles.

1. Abbate P. E. Di Pane F. Villafañe M. Gieco C. L. &Lanzilotta J. J.(2021).Respuesta a la aplicación de fungicida en los cultivares de trigo más rendidores en las principales subregiones trigueras argentinas.https://repositorio.inta.gob.ar/xmlui/handle/20.500.12123/9619

2. Effect of Missing Values on Variance Component Estimates in Multienvironment Trials

3. Evaluating Testing Strategies for Plant Breeding Field Trials: Redesigning a CIMMYT International Wheat Nursery

4. Applications of mixed models in plant breeding.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3