Agronomic impacts of new regulations governing land application of Class B biosolids in Florida

Author:

Vieira‐Filho Leandro O.1ORCID,Silveira Maria L.1ORCID,Kohmann Marta M.2,Sollenberger Lynn E.3ORCID,Sanchez Joao M. D.1,Cardoso Abmael S.1ORCID,Ricken Ester C.1

Affiliation:

1. Range Cattle Research and Education Center University of Florida Ona Florida USA

2. Department of Agronomy University of Wisconsin‐Madison Madison Wisconsin USA

3. Agronomy Department University of Florida Gainesville Florida USA

Abstract

AbstractAlthough land application of biosolids is an attractive option for beneficial reuse, it represents a complex challenge for government and private organizations. This 3‐year field study evaluated the agronomic impacts of reduced biosolids rates imposed by new regulations in Florida on bahiagrass (Paspalum notatum Flugge) herbage accumulation and nutritive value. Treatments consisted of a factorial combination of two phosphorus (P) sources (triple superphosphate and biosolids) applied at 0 (control), 20 (low), 40 (intermediate), and 60 kg total P ha−1 (high). Triple superphosphate plots received the same nitrogen (N) load (from ammonium nitrate) as the corresponding biosolids treatments. Bahiagrass herbage accumulation increased with increasing P and associated N rates. Bahiagrass annual herbage accumulation ranged from 2120 kg ha−1 in 2022 to 6970 kg ha−1 in 2020 and was 33%–80% less than previously published data. This was likely due to the reduced biosolids rates that did not supply sufficient N and P to sustain adequate forage production. Lesser herbage accumulation will likely lead to greater application of inorganic fertilizers, which generally have greater environmental footprint than biosolids. Biosolids generally resulted in either similar or greater bahiagrass crude protein, in vitro digestible organic matter, and tissue mineral concentrations than inorganic fertilizer. Similarly, no differences in bahiagrass N and P recovery between biosolids and inorganic fertilizer were observed. This study, along with a significant body of literature, demonstrated that biosolids have considerable fertilizer value and can be an effective alternative to commercial inorganic fertilizer while also providing environmental and economic benefits.

Publisher

Wiley

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3