Assessment of outcrossing potential between cultivated and weedy rice under alternate wetting and drying irrigation management

Author:

Rohila Jai S.1ORCID,Gealy David R.1,Jackson Aaron K.1,Ziska Lewis H.2

Affiliation:

1. Dale Bumpers National Rice Research Center USDA‐ARS Stuttgart Arkansas USA

2. USDA‐ARS Beltsville Maryland USA

Abstract

AbstractIn recent years, water conservation efforts in rice production have necessitated the use of reduced irrigation input systems such as alternate wetting and drying (AWD) as a substitute to conventional continuous flood‐irrigated systems (FLD), but little is known about the role of AWD in altering outcrossing potentials between cultivated rice and weedy rice (WR). In the United States, rice growers often control WR by cultivating varieties that possess herbicide resistance. However, an ongoing concern with such technology is hybridization or outcrossing between herbicide‐resistant rice cultivars and WR over time. Such outcrossing may result in transferring of herbicide resistance with increased occurrence of herbicide‐resistant WR ecotypes and reduction in the efficacy of herbicide management. This study compared and quantified outcrossing rates between two Clearfield rice varieties (CL142AR and CL261) that are herbicide resistant and two common WR genotypes, strawhull (SH) and blackhull (BH), under FLD and AWD management. Outcrossing was evident in all four genotype combinations (i.e., CL142AR or CL261 cultivated rice and SH or BH weedy rice) in both FLD and AWD; however, outcrossing rates with CL261 averaged about 6.5 times lower than those with CL142AR. Additional analysis revealed that higher outcrossing rates were associated with increased synchrony of flowering times and closer vertical proximity of panicles of WR to CL142AR than with CL261. AWD irrigation reduced outcrossing in SH weedy rice, suggesting that reduced outcrossing of SH weedy rice might be an additional benefit from AWD irrigation management.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3