Determination of site‐specific nitrogen cycle reaction kinetics allows accurate simulation of in situ nitrogen transformation rates in a large North American estuary

Author:

Tang Weiyi1ORCID,Fortin Samantha G.1ORCID,Intrator Naomi1ORCID,Lee Jenna A.1ORCID,Kunes Moriah A.1ORCID,Jayakumar Amal1,Ward Bess B.1ORCID

Affiliation:

1. Department of Geosciences Princeton University Princeton New Jersey USA

Abstract

AbstractNitrogen (N) bioavailability affects phytoplankton growth and primary production in the aquatic environment. N bioavailability is partly determined by biological N cycling processes that either transform N species or remove fixed N. Reliable estimates of their kinetic parameters can help understand the distribution of N cycling processes. However, available estimates of kinetic parameters are often derived from microbial isolates and may not be representative of the natural environment. Observations are particularly lacking in estuarine and coastal waters. We conducted isotope tracer addition incubations to evaluate substrate affinities of nitrification, denitrification and anammox in the Chesapeake Bay water column. The half‐saturation constant for ammonia oxidation ranged from 0.38 to 0.75 μM ammonium, substantially higher than observed in the open oceans. Half‐saturation constants for denitrification—0.92–1.86 μM nitrite or 1.15 μM nitrate—were within the lower end or less than those reported for other aquatic environments and for denitrifier isolates. Interestingly, water column denitrification potential was comparable to that of sedimentary denitrification, highlighting the contribution of the water column to N removal during anoxia. Mostly undetectable anammox rates prevented us from deriving the half‐saturation constants, suggesting a low affinity of anammox. Using these substrate kinetics, we were able to predict in situ N cycling rates and explain the vertical distribution of N nutrient concentrations. Our newly derived substrate kinetics parameters can be useful for improving model representation of N nutrient dynamics in estuarine and coastal waters, which is critical for assessing the ecosystem productivity and function.

Funder

Division of Ocean Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3