Upcycling imperfect broccoli and carrots into healthy snacks using an innovative 3D food printing approach

Author:

Ahmadzadeh Safoura1,Clary Taylor1,Rosales Alex12,Ubeyitogullari Ali13ORCID

Affiliation:

1. Department of Food Science University of Arkansas Fayetteville Arkansas USA

2. Department of Chemical Engineering University of California Berkeley California USA

3. Department of Biological and Agricultural Engineering University of Arkansas Fayetteville Arkansas USA

Abstract

AbstractVegetables are healthy foods with nutritional benefits; however, nearly one‐third of the world's vegetables are lost each year, and some of the losses happen due to the imperfect shape of the vegetables. In this study, imperfect vegetables (i.e., broccoli and carrots) were upcycled into freeze‐dried powders to improve their shelf‐life before they were formed into food inks for 3D printing. The rheology of the food inks, color analysis of the uncooked and cooked designs, and texture analysis of the cooked designs were determined. The inks with 50% and 75% vegetables provided the best printability and shape fidelity. 3D printing at these conditions retained a volume comparable to the digital file (14.4 and 14.3 cm3 vs. 14.6 cm3, respectively). The control, a wheat flour‐based formulation, showed the lowest level of stability after 3D printing. The viscosity results showed that all the food inks displayed shear‐thinning behavior, with broccoli having the greatest effect on viscosity. There was a significant color difference between uncooked and cooked samples, as well as between different formulations. The hardness of the baked 3D‐printed samples was affected by the type and content of vegetable powders, where carrot‐based snacks were notably harder than snacks containing broccoli. Overall, the results show that 3D food printing can be potentially used to reduce the loss and waste of imperfect vegetables.

Funder

National Institute of Food and Agriculture

Publisher

Wiley

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3