AAV1.NT‐3 gene therapy in the SOD1KO mouse model of accelerated sarcopenia

Author:

Tong Lingying1,Ozes Burcak1,Moss Kyle1,Myers Morgan1,Ridgley Alicia1,Sahenk Zarife123ORCID

Affiliation:

1. Center for Gene Therapy The Abigail Wexner Research Institute, Nationwide Children's Hospital Columbus OH USA

2. Department of Pediatrics and Neurology Nationwide Children's Hospital and The Ohio State University Columbus OH USA

3. Department of Pathology and Laboratory Medicine Nationwide Children's Hospital Columbus OH USA

Abstract

AbstractBackgroundSarcopenia, an age‐related loss of muscle mass, is a critical factor that affects the health of the older adults. The SOD1KO mouse is deficient of Cu/Zn superoxide dismutase, used as an accelerated aging model. We previously showed that NT‐3 improves muscle fibre size by activating the mTOR pathway, suggesting a potential for attenuating age‐related muscle loss. This study assessed the therapeutic efficacy of AAV1.NT‐3 in this accelerated aging model.MethodsTwelve 6 months old SOD1KO mice were injected intramuscularly with a 1 × 1011 vg dose of AAV1.tMCK.NT‐3, and 13 age‐matched SOD1KO mice were used as controls. The treatment effect was evaluated using treadmill, rotarod and gait analyses as well as histological studies assessing changes in muscle fibre, and fibre type switch, in tibialis anterior, gastrocnemius, and triceps muscles, and myelin thickness by calculating G ratio in sciatic and tibial nerves. Molecular studies involved qPCR experiments to analyse the expression levels of mitochondrial and glycolysis markers and western blot experiments to assess the activity of mTORC1 pathway.ResultsTreatment resulted in a 36% (154.9 vs. 114.1; P < 0.0001) and 76% increase (154.3 vs. 87.6; P < 0.0001) in meters ran, with treadmill test at 3 and 6 months post gene delivery. In addition, the treated cohort stayed on rotarod 30% (52.7 s vs. 40.4 s; P = 0.0095) and 54% (50.4 s vs. 32.7 s; P = 0.0007) longer, compared with untreated counterparts at 3 and 6 months post injection. Gait analysis, performed at endpoint, showed that stride width was normalized to wild type levels (29.3 mm) by an 11% decrease, compared with untreated cohort (28.6 mm vs. 32.1 mm; P = 0.0014). Compared with wild‐type, SOD1KO mice showed 9.4% and 11.4% fibre size decrease in tibialis anterior and gastrocnemius muscles, respectively, which were normalized to wild type levels with treatment. Fibre diameter increase was observed prominently in FTG fibre type. G ratio analysis revealed hypomyelination in the tibial (0.721) and sciatic (0.676) nerves of SOD1KO model, which was reversed in the NT‐3 cohort (0.646 and 0.634, respectively). Fibre size increase correlated with the increase in the p‐S6 and p‐4E‐BP1 levels, and in the glycolysis markers in tibialis anterior. Alterations observed in the mitochondrial markers were not rescued with treatment. Overall, response to NT‐3 was subdued in gastrocnemius muscle.ConclusionsThis study shows that AAV1.NT‐3 gene therapy protected SOD1KO mouse from accelerated aging effects functionally and histologically. We further confirmed that NT‐3 has potential to activate the mTOR and glycolytic pathways in muscle.

Funder

Sarepta Therapeutics

Publisher

Wiley

Subject

Physiology (medical),Orthopedics and Sports Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3