Remote sensing of Antarctic polychaete reefs (Serpula narconensis): reproducible workflows for quantifying benthic structural complexity with action cameras, remotely operated vehicles and structure‐from‐motion photogrammetry

Author:

Montes‐Herrera Juan C.1ORCID,Hill Nicole1ORCID,Cummings Vonda J.2ORCID,Johnstone Glenn J.3ORCID,Stark Jonathan S.34ORCID,Lucieer Vanessa1ORCID

Affiliation:

1. Institute for Marine and Antarctic Studies University of Tasmania Hobart 7001 Tasmania Australia

2. National Institute of Water and Atmospheric Research PO Box 14901 Wellington New Zealand

3. Australian East Antarctic Monitoring Program, Australian Antarctic Division 203 Channel Hwy Kingston 7050 Tasmania Australia

4. Securing Antarctica's Environmental Future, Australian Antarctic Division 203 Channel Hwy Kingston 7050 Tasmania Australia

Abstract

AbstractQuantifying the structural complexity provided by biogenic habitat structures is important in ecology, conservation and management, and yet remains a challenging task, particularly in deep sea and polar environments, that current photogrammetry tools can alleviate. In this study, we demonstrate how small remotely operated vehicles and compact underwater GoPro® action cameras can be easily integrated into coastal Antarctic surveys to quantify structural complexity of under‐ice benthos via underwater photogrammetry. Forty‐four pairs of 1 m2 quadrats at 1 cm resolution, each comprising an orthomosaic and three‐dimensional reconstructions, were analyzed to describe relationships between benthic cover and structural complexity metrics. The study case provided insights into a unique biogenic habitat, highlighting the role of integrating structural complexity metrics in Antarctic benthic surveys. Although no clear relationships between structural complexity and biodiversity were found, high cover of live reef‐building polychaetes was associated with higher levels of structural complexity, particularly fractal dimension (D). Further, broken biogenic structures, product of disturbance events retain habitat structural complexity known to be associated with larvae settlement and biogenic reef growth. This suggests that D can be used as a metric for detecting subtle changes in biogenic structural complexity. We build from available open‐source code, a reproducible scientific workflow that is expected to facilitate the acquisition and analysis of structural complexity metrics. The workflow presented aims to encourage and accelerate the use of photogrammetry tools for benthic studies aiming to quantify biogenic structural complexity across depths and latitudes.

Funder

Australian Research Council

Publisher

Wiley

Subject

Nature and Landscape Conservation,Computers in Earth Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3