Multispecies crop mixtures increase insect biodiversity in an intercropping experiment

Author:

Brandmeier Jana12,Reininghaus Hannah2ORCID,Scherber Christoph123ORCID

Affiliation:

1. Institute of Landscape Ecology University of Münster Münster Germany

2. Centre for Biodiversity Monitoring and Conservation Science Leibniz Institute for the Analysis of Biodiversity Change Bonn Germany

3. Institute of Evolutionary Biology and Ecology University of Bonn Bonn Germany

Abstract

Abstract Recent biodiversity declines require action across sectors such as agriculture. The situation is particularly acute for arthropods, a species‐rich taxon providing important ecosystem services. To counteract the negative consequences of agricultural intensification, creating a less hostile agricultural ‘matrix’ through growing crop mixtures can reduce harm for arthropods without yield losses. While grassland biodiversity experiments showed positive plant biodiversity effects on arthropods, experiments manipulating crop diversity and agrochemical input used to study arthropods are lacking. Here, we experimentally manipulated crop diversity (1–3 species, fallows), crop species (wheat, faba bean, linseed and oilseed rape) and agrochemical input (high vs. low) and studied responses of arthropod biodiversity. We tested whether arthropod responses were affected by crop diversity, mixtures and management. Additionally, we measured crop biomass. Crop biomass increased with crop diversity under high‐input management, while under low management intensity, biomass was highest in two‐species mixtures. Increasing crop diversity positively affected arthropod abundance and diversity, under both low‐ and high‐input management. Crop mixtures containing faba bean, linseed or oilseed rape had particularly high arthropod diversity. Mass‐flowering crops attracted more arthropods than legumes or cereals. Integrating intercropping into agricultural systems could increase flower visits by insects up to 1.5 million per hectare, thus likely also supporting pollination and pest‐control ecosystem services. Flower visitor network complexity increased in mixtures containing linseed and faba bean and under low‐input management. Intercropping can counteract insect declines in farmland by creating beneficial matrix habitat without compromising crop yield.

Funder

European Commission

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3