Fawn birthdays: From opportunistically sampled fawn rescue data to true wildlife demographic parameters

Author:

Kauffert Johanna1ORCID,Baur Sophie12ORCID,Matiu Michael3ORCID,König Andreas4ORCID,Peters Wibke24ORCID,Menzel Annette15ORCID

Affiliation:

1. Ecoclimatology, TUM School of Life Sciences Technical University of Munich Hans‐Carl‐von‐Carlowitz‐Platz 2 D‐85354 Freising Germany

2. Bavarian State Institute of Forestry (LWF) Hans‐Carl‐von‐Carlowitz‐Platz 1 D‐85354 Freising Germany

3. Department of Civil, Environmental and Mechanical Engineering University of Tento I‐38122 Trento Italy

4. Wildlife Biology and Management Unit, TUM School of Life Sciences Technical University of Munich Hans‐Carl‐von‐Carlowitz‐Platz 2 D‐85354 Freising Germany

5. Institute for Advanced Study Technical University of Munich Lichtenbergstraße 2a D‐85748 Garching Germany

Abstract

Abstract Spring mowing in May and June is one of the main causes of mortality of roe deer fawns in agricultural regions. Knowing the exact birth distribution of fawns is important to guide farmers in their pre‐mowing precautions to avoid fawn deaths. Wildlife volunteers searching fields prior to mowing can act as citizen scientists by producing data sets of rescued fawns and their approximate age at find. However, due to weather‐dependent searches, the corresponding birth distributions can be highly skewed. We simulated virtual field data to examine the shortcomings of such data sources and introduced two algorithms for reconstructing reliable birth distribution parameters (mean and standard deviation) based on skewed samples. We found that weather‐dependent search data biased the calculated means and standard deviations by up to 14 and 5 days, respectively. However, the use of the proposed advanced algorithms (Grid Search and Machine Learning) resulted in better estimates of the sample means and standard deviations by reducing the root‐mean‐square error by 65% and 80% respectively. Furthermore, the Grid Search algorithm was able to capture birth distribution parameters based on real citizen science data in Bavaria, Germany, from 2021, which are close to the results of more systematic samples of the same year. The simulation exercise highlighted the shortcomings and discrepancies of using non‐probabilistic samples, for example on the occasion of mowing activities, to study demographic parameters compared to the true simulated distribution. Yet, the proposed algorithms can address these drawbacks and potentially turn citizen science data into an important data source for wildlife studies. This could ultimately help reduce wildlife losses during the mowing season by better knowing the distribution of births in a region.

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3