High‐diversity seed additions promote herb‐layer recovery during restoration of degraded oak woodland

Author:

Kaul Andrew D.1ORCID,Dell Noah D.1,Delfeld Bradley M.12,Engelhardt Megan J.2,Long Quinn G.2,Reid J. Leighton3ORCID,Saxton Michael L.2,Trager James C.2,Albrecht Matthew A.1ORCID

Affiliation:

1. Center for Conservation and Sustainable Development Missouri Botanical Garden St. Louis Missouri USA

2. Shaw Nature Reserve Missouri Botanical Garden St. Louis Missouri USA

3. School of Plant and Environmental Sciences Virginia Tech Blacksburg Virginia USA

Abstract

Abstract Seed limitation represents a fundamental constraint to the restoration of native plant communities, and practitioners often apply seed additions to overcome this barrier. However, surprisingly few studies have experimentally tested whether seed additions can increase diversity in herbaceous communities of oak woodlands, which have undergone large‐scale transformation due to logging, altered fire regimes and invasion by non‐native species. Previous studies suggest that structural (thinning of woody biomass) and process‐based (prescribed fire) restoration treatments alone are unlikely to restore the full breadth of taxonomic and functional diversity in the herb layer, which accounts for most species in woodland ecosystems. To explore whether seed additions can improve restoration outcomes in an oak woodland, we sowed high‐diversity seed mixes in paired transects (seeded vs. controls) along a topographic gradient in a degraded site undergoing restoration with non‐native shrub removal, selective tree thinning and prescribed fire. Seed mixes contained native forbs, grasses and sedges from locally sourced material (n = 169 total species) in the regional species pool, and were designed to match species' habitat affinity to appropriate locations along the topographic gradient. The herb flora was sampled pre‐seeding, and for two consecutive years after additions. Seed additions significantly altered community and functional composition, and increased native species richness by 29% (43.0 vs 55.4), and floristic quality by 30% relative to controls. However, fewer than half of the sown species were established 2 years after planting, suggesting that dispersal and establishment limitation are both important barriers to the recovery of the herb flora in oak woodlands. We also tested if species' sown abundance, conservatism or functional group predicted establishment success. Species sown at high abundances and less conservative species recruited the most reliably. Grass and forb establishment rates were more dependent on seeding rate than sedges or legumes, and the mechanisms behind this trend merit further investigation. We found that adding high‐diversity seed mixes in conjunction with non‐native shrub removal, canopy thinning and burning, can accelerate recovery of herbaceous communities in a highly degraded woodland.

Funder

Institute of Museum and Library Services

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3