Robust quantitative susceptibility mapping via approximate message passing with parameter estimation

Author:

Huang Shuai1ORCID,Lah James J.2,Allen Jason W.12,Qiu Deqiang1ORCID

Affiliation:

1. Department of Radiology and Imaging Sciences Emory University Atlanta Georgia USA

2. Department of Neurology Emory University Atlanta Georgia USA

Abstract

PurposeFor quantitative susceptibility mapping (QSM), the lack of ground‐truth in clinical settings makes it challenging to determine suitable parameters for the dipole inversion. We propose a probabilistic Bayesian approach for QSM with built‐in parameter estimation, and incorporate the nonlinear formulation of the dipole inversion to achieve a robust recovery of the susceptibility maps.TheoryFrom a Bayesian perspective, the image wavelet coefficients are approximately sparse and modeled by the Laplace distribution. The measurement noise is modeled by a Gaussian‐mixture distribution with two components, where the second component is used to model the noise outliers. Through probabilistic inference, the susceptibility map and distribution parameters can be jointly recovered using approximate message passing (AMP).MethodsWe compare our proposed AMP with built‐in parameter estimation (AMP‐PE) to the state‐of‐the‐art L1‐QSM, FANSI, and MEDI approaches on the simulated and in vivo datasets, and perform experiments to explore the optimal settings of AMP‐PE. Reproducible code is available at: https://github.com/EmoryCN2L/QSM_AMP_PE.ResultsOn the simulated Sim2Snr1 dataset, AMP‐PE achieved the lowest NRMSE, deviation from calcification moment and the highest SSIM, while MEDI achieved the lowest high‐frequency error norm. On the in vivo datasets, AMP‐PE is robust and successfully recovers the susceptibility maps using the estimated parameters, whereas L1‐QSM, FANSI and MEDI typically require additional visual fine‐tuning to select or double‐check working parameters.ConclusionAMP‐PE provides automatic and adaptive parameter estimation for QSM and avoids the subjectivity from the visual fine‐tuning step, making it an excellent choice for the clinical setting.

Funder

National Institutes of Health

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3