Optimized backstepping‐based finite‐time containment control for nonlinear multi‐agent systems with prescribed performance

Author:

Tang Li1ORCID,Zhang Liang2ORCID,Xu Ning3ORCID

Affiliation:

1. College of Mathematical Sciences Bohai University Jinzhou Liaoning China

2. College of Control Science and Engineering Bohai University Jinzhou Liaoning China

3. College of Information Science and Technology Bohai University Jinzhou Liaoning China

Abstract

AbstractIn this article, a finite‐time optimal containment control method is proposed for nonlinear multi‐agent systems with prescribed performance. First, a neural network‐based reinforcement learning algorithm is developed under the optimized backstepping framework. The algorithm employs an identifier‐critic‐actor architecture, where the identifiers, critics and actors are used to estimate the unknown dynamics, evaluate the system performance, and optimize the system, respectively. Subsequently, in order to guarantee the transient performance of the tracking error, the original system is converted into an equivalent unconstrained system. Then, the tracking errors are allowed to converge to a prescribed set of residuals in finite time by combining prescribed performance control and finite‐time optimal control techniques. Furthermore, by using the Lyapunov stability theorem, it is verified that all signals are semi‐globally practical finite‐time stable, and all followers can converge to a convex region formed by multiple leaders. Finally, the effectiveness of the proposed scheme is demonstrated by a practical example.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3