A Novel Method for the Assessment of Feeding Rate as a Phenotypic Endpoint for the Impact of Pollutants in Daphnids

Author:

Rowan Emma1,Leung Anne1,Grintzalis Konstantinos1ORCID

Affiliation:

1. School of Biotechnology Dublin City University Dublin Republic of Ireland

Abstract

AbstractTraditional approaches for monitoring aquatic pollution primarily rely on chemical analysis and the detection of pollutants in the aqueous environments. However, these methods lack realism and mechanistic insight and, thus, are increasingly supported by effect‐based methods, which offer sensitive endpoints. In this context, daphnids, a freshwater species used extensively in molecular ecotoxicology, offer fast and noninvasive approaches to assess the impact of pollutants. Among the phenotypic endpoints used, feeding rate is a highly sensitive approach because it provides evidence of physiological alterations even in sublethal concentrations. However, there has been no standardized method for measuring feeding rate in daphnids, and several approaches follow different protocols. There is a diversity among tests employing large volumes, extensive incubation times, and high animal densities, which in turn utilize measurements of algae via fluorescence, radiolabeling, or counting ingested cells. These tests are challenging and laborious and sometimes require cumbersome instrumentation. In the present study, we optimized the conditions of a miniaturized fast, sensitive, and high‐throughput assay to assess the feeding rate based on the ingestion of fluorescent microparticles. The protocol was optimized in neonates in relation to the concentration of microplastic and the number of animals to increase reproducibility. Daphnids, following exposures to nonlethal concentrations, were incubated with microplastics; and, as filter feeders, they ingest microparticles. The new approach revealed differences in the physiology of daphnids in concentrations below the toxicity limits for a range of pollutants of different modes of action, thus proving feeding to be a more sensitive and noninvasive endpoint in pollution assessment. Environ Toxicol Chem 2024;00:1–11. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

Funder

Science Foundation Ireland

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3