Tyrosine metabolic reprogramming coordinated with the tricarboxylic acid cycle to drive glioma immune evasion by regulating PD‐L1 expression

Author:

Wang Ji‐Yan1ORCID,Dai Xin‐Tong1,Gao Qing‐Le1,Chang Hong‐Kai1,Zhang Shuai2,Shan Chang‐Liang1,He Tao3

Affiliation:

1. State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin China

2. School of Integrative Medicine Tianjin University of Traditional Chinese Medicine Tianjin China

3. Department of Pathology Characteristic Medical Center of The Chinese People's Armed Police Force Tianjin China

Abstract

AbstractDue to the existence of the blood–brain barrier in glioma, traditional drug therapy has a poor therapeutic outcome. Emerging immunotherapy has been shown to have satisfactory therapeutic effects in solid tumors, and it is clinically instructive to explore the possibility of immunotherapy in glioma. We performed a retrospective analysis of RNA‐seq data and clinical information in 1027 glioma patients, utilizing machine learning to explore the relationship between tyrosine metabolizing enzymes and clinical characteristics. In addition, we also assessed the role of tyrosine metabolizing enzymes in the immune microenvironment including immune infiltration and immune evasion. Highly expressed tyrosine metabolizing enzymes 4‐hydroxyphenylpyruvate dioxygenase, homogentisate 1,2‐dioxygenase, and fumarylacetoacetate hydrolase not only promote the malignant phenotype of glioma but are also closely related to poor prognosis. The expression of tyrosine metabolizing enzymes could distinguish the malignancy degree of glioma. More importantly, tyrosine metabolizing enzymes regulate the adaptive immune process in glioma. Mechanistically, multiple metabolic enzymes remodel fumarate metabolism, promote α‐ketoglutarate production, induce programmed death‐ligand 1 expression, and help glioma evade immune surveillance. Our data suggest that the metabolic subclass driven by tyrosine metabolism provides promising targets for the immunotherapy of glioma.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3