General correlation for pressure drop through randomly‐packed beds of spheres with negligible wall effects

Author:

Dixon Anthony G.1ORCID

Affiliation:

1. Department of Chemical Engineering Worcester Polytechnic Institute Worcester Massachusetts USA

Abstract

AbstractPressure drop in fixed beds has been studied for over a century and a large number of conflicting correlations exist in the literature. Contributing factors to these differences include the use of particles of different shapes, the presence of wall effects in beds of low tube‐to‐particle diameter ratio (N) and parameter fitting over limited ranges of modified Reynolds number . The present work, in contrast, considers the entire Reynolds number range for perfect spheres in unbounded (high‐N) random‐packed beds. An asymptote‐based correlation has been developed based on published data for extremely high and on new particle‐resolved computational fluid dynamics (PRCFD) results for extremely low . The resulting equation is given by: . This equation fits a literature data set of 541 points with average error 5.66%, and shows correct limits for both high and low .

Publisher

Wiley

Subject

General Chemical Engineering,Environmental Engineering,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3