Developmental and regional dependence of macromolecular proton fraction and fractional anisotropy in fixed brain tissue

Author:

Drobyshevsky Alexander1ORCID,Synowiec Sylvia1,Goussakov Ivan1,Yarnykh Vasily2

Affiliation:

1. Department of Pediatrics NorthShore University HealthSystem Research Institute Evanston IL USA

2. Department of Radiology University of Washington Seattle WA USA

Abstract

An important advantage of imaging fixed tissue is a gain in signal‐to‐noise ratio and in resolution due to unlimited scan time. However, the fidelity of quantitative MRI parameters in fixed brain tissue, particularly in developmental settings, requires validation. Macromolecular proton fraction (MPF) and fractional anisotropy (FA) indices are quantitative markers of myelination and axonal integrity relevant to preclinical and clinical research. The goal of this study was to assert the correspondence of MR‐derived markers of brain development MPF and FA between in vivo and fixed tissue measures. MPF and FA were compared in several white and gray matter structures of the normal mouse brain at 2, 4, and 12 weeks of age. At each developmental stage, in vivo imaging was performed, followed by paraformaldehyde fixation and a second imaging session. MPF maps were acquired from three source images (magnetization transfer weighted, proton density weighted, and T1 weighted), and FA was obtained from diffusion tensor imaging. The MPF and FA values, measured in the cortex, striatum, and major fiber tracts, were compared before and after fixation using Bland–Altman plots, regression analysis, and analysis of variance. MPF values of the fixed tissue were consistently greater than those from in vivo measurements. Importantly, this bias varied significantly with brain region and the developmental stage of the tissue. At the same time, FA values were preserved after fixation, across tissue types and developmental stages. The results of this study suggest that MPF and FA in fixed brain tissue can be used as a proxy for in vivo measurements, but additional considerations should be made to correct for the bias in MPF.

Publisher

Wiley

Subject

Spectroscopy,Radiology, Nuclear Medicine and imaging,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3