Transformer Connections: Improving Segmentation in Blurred Near‐Infrared Blood Vessel Image in Different Depth

Author:

Wang Jiazhe1,Shimizu Koichi2,Yoshie Osamu1

Affiliation:

1. Graduate School of Information, Production and Systems Waseda University Fukuoka 808‐0135 Japan

2. Xidian University, No.2 South Taibai Road Xi'an 710071 China

Abstract

AbstractHigh‐fidelity segmentation of blood vessels plays a pivotal role in numerous biomedical applications, such as injection assistance, cancer detection, various surgeries, and vein authentication. Near‐infrared (NIR) transillumination imaging is an effective and safe method to visualize the subcutaneous blood vessel network. However, such images are severely blurred because of the light scattering in body tissues. Inspired by the Vision Transformer model, this paper proposes a novel deep learning network known as transformer connection (TRC)‐Unet to capture global blurred and local clear correlations while using multi‐layer attention. Our method mainly consists of two blocks, thereby aiming to remap skip connection information flow and fuse different domain features. Specifically, the TRC extracts global blurred information from multiple layers and suppresses scattering to increase the clarity of vessel features. Transformer feature fusion eliminates the domain gap between the highly semantic feature maps of the convolutional neural network backbone and the adaptive self‐attention maps of TRCs. Benefiting from the long‐range dependencies of transformers, we achieved competitive results in relation to various competing methods on different data sets, including retinal vessel segmentation, simulated blur image segmentation, and real NIR blood vessel image segmentation. Moreover, our method remarkably improved the segmentation results of simulated blur image data sets and a real NIR vessel image data set. The quantitative results of ablation studies and visualizations are also reported to demonstrate the superiority of the TRC‐Unet design. © 2024 The Author(s). IEEJ Transactions on Electrical and Electronic Engineering published by Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3