Shoreline slope influences movements of larval lampreys over dewatered substrate

Author:

Liedtke Theresa L.1ORCID,Harris Julianne E.2ORCID,Gray Ann E.3ORCID

Affiliation:

1. U.S. Geological Survey, Western Fisheries Research Center Cook Washington USA

2. U.S. Fish and Wildlife Service, Columbia River Fish and Wildlife Conservation Office Vancouver Washington USA

3. U.S. Fish and Wildlife Service, Oregon Fish and Wildlife Office Portland Oregon USA

Abstract

AbstractLarval lampreys are filter feeders that live for several years burrowed in fine sediments in freshwater streams. Stream side channels and edges, where larval lampreys gather, are vulnerable to natural and human‐caused dewatering. Water level reductions can strand and kill thousands of larval lampreys, in part because many remain burrowed until their habitats are exposed, at which point larvae must emerge and attempt to move over dewatered substrate to locate wetted habitat. Dewatering for restoration efforts or seasonal closures of irrigation canals can be done slowly to reduce lamprey strandings, but in some settings, mechanisms are lacking to control the dewatering rate. Phased dewatering, where water level is reduced in stages separated by periods of static water level, could provide options when dewatering rate cannot be tightly controlled. To guide this phased approach, information is needed on the movement capability of larval lampreys. We examined larval lamprey (Entosphenus tridentatus and Lampetra spp.) movement distance and rate over dewatered substrate at shoreline slopes of 1%, 5%, 10% and 20% in a laboratory setting and modelled results using gamma regression models. Model results suggest both movement distance and movement rate increased with increasing slope and increasing larval length. We used the models to predict minimum distances and rates that 90%, 75% and 50% of medium‐sized (75 mm) lampreys would move over dewatered substrates on slopes of 1%–20%. The models predicted that 50% of larvae could move distances of ≥31 cm at rates of ≥0.7 mm/s on a 1% slope and distances of ≥502 cm at rates of ≥8.6 mm/s on a 20% slope. We present an example scenario of how information on larval movement capabilities and shoreline slope could guide phased dewatering events to limit impacts to lampreys.

Funder

U.S. Fish and Wildlife Service

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3