Identification of calcium chelating peptides from peanut protein hydrolysate and absorption activity of peptide–calcium complex

Author:

Bu Guanhao1ORCID,Zhao Xiaoling1,Wang Mengli1,Ti Guanghui1,Chen Fusheng1ORCID,Duan Xiaojie1,Huang Yanan2,Li Panxin2

Affiliation:

1. College of Food Science and Engineering Henan University of Technology Zhengzhou China

2. Henan Province Nanjie Village (Group) Co., Ltd Luohe China

Abstract

AbstractBACKGROUNDPeanut peptides have good chelating ability with metal ions. However, there are few studies on the chelation mechanism of peanut peptides with calcium and absorption properties of peptide–calcium complex.RESULTSPeptides with high calcium chelating rate were isolated and purified from peanut protein hydrolysate (PPH), and the chelation rate of component F21 was higher (81.4 ± 0.8%). Six peptides were identified from component F21 by liquid chromatography–tandem mass spectrometry, and the frequency of acidic amino acids and arginine in the amino acid sequence was higher in all six peptides. Peanut peptide–calcium complex (PPH21‐Ca) was prepared by selecting component F21 (PPH21). Ultraviolet analysis indicated that the chelate reaction occurred between peanut peptide and calcium ions. Fourier transform infrared analysis showed that the chelating sites were carboxyl and amino groups on the amino acid residues of peptides. Scanning electron microscopy revealed that the surface of peanut peptide had a smooth block structure, but the surface of the complex had a granular morphology. Caco‐2 cell model tests revealed that the bioavailability of PPH21‐Ca was 58.4 ± 0.5%, which was significantly higher than that of inorganic calcium at 37.0 ± 0.4%.CONCLUSIONPeanut peptides can chelate calcium ions by carboxyl and amino groups, and the peptide–calcium complex had higher bioavailability. This study provides a theoretical basis for the development of new calcium supplement products that are absorbed easily. © 2024 Society of Chemical Industry.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3