Adenylate kinase 2 is a biomarker related to the prognosis of glioma and the immune microenvironment

Author:

Liu Zhichen1ORCID,Tang Chunjiao1,Teng Xu1,Mohamed Zakaria Ahmed1,Fan Jingyi1ORCID

Affiliation:

1. Department of Pediatrics Zhongnan Hospital of Wuhan University Wuhan China

Abstract

AbstractBackgroundAmong the brain and the other central nervous system, gliomas are the most prevalent malignant primary tumors. Adenylate kinase 2 (AK2) is generally thought to be crucial for energy metabolism and signal transduction. Several disorders are correlated with its aberrant expression. However, it is unclear what functions AK2 might have in gliomas.MethodsWe investigated the relationship between AK2 expression and clinicopathological features of glioma patients using information obtained from public databases and patient tissue microarrays. AK2 knockdown glioma cell lines were constructed to explore how AK2 affects glioma progress. The association between AK2 and the immune microenvironment in gliomas was evaluated by multiple methods.ResultsAK2 expression was higher in glioma samples than in normal brain tissues. Older patients and those with higher‐grade, IDH‐wildtype, 1p/19q codeletion‐free, and MGMT‐unmethylated tumors had higher levels of AK2 expression, linking to poor outcomes. Thus, gliomas with high AK2 expression have a worse prognosis. GO and KEGG analyses demonstrated that AK2 was relevant to cell division and DNA replication. Downregulation of AK2 suppresses cell proliferation, migration, and colony formation of glioma cell lines in vitro. AK2 expression was positively connected to the inhibitory immune checkpoints, also correlating with immune infiltration degree.ConclusionsIn this study, AK2 may be a potential biological target for more precise molecular therapy of gliomas, since its high expression is associated with worse outcomes and a more malignant immune microenvironment.

Publisher

Wiley

Subject

Microbiology (medical),Biochemistry (medical),Medical Laboratory Technology,Clinical Biochemistry,Public Health, Environmental and Occupational Health,Hematology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3