Ultrasound Combined With Continuous Microbubble Injection to Enhance Catheter‐Directed Thrombolysis in Vitro and in Vivo

Author:

Feng Shuang1,Wang Shan2,Tang Jiawei1ORCID,Zhu Xiansheng1ORCID

Affiliation:

1. Department of Ultrasound General Hospital of Southern Theatre Command Guangzhou China

2. Department of Ultrasound Huizhou Central People's Hospital Huizhou China

Abstract

ObjectivesTo investigate the influence of microbubble perfusion mode on catheter‐directed thrombolysis (CDT), we evaluated the effect of two different types of microbubble perfusion modes (continuous injection versus bolus injection) on the thrombolytic efficacy of CDT in vitro and further assessed the effect of continuous microbubble injection on CDT in vivo.MethodsIn an in vitro experimental setup, 50 fresh bovine whole blood clots were randomized into five groups: ultrasound and continuous microbubble injection‐enhanced CDT (US + cMB + CDT), ultrasound and bolus microbubble injection‐enhanced CDT (US + bMB + CDT), US + CDT, US + cMB, and CDT. In a porcine femoral vein thrombosis model, 16 completely obstructive thrombi were randomly assigned to the CDT group and the US + cMB + CDT group, respectively. Thrombolysis rate, vascular recanalization rate, hematoxylin–eosin, and immunofluorescence staining were used to evaluate the thrombolytic effect in vitro and in vivo.ResultsIn vitro, US + cMB + CDT group resulted in a significantly higher thrombolysis rate compared with the other four groups (P < .05). Meanwhile, this group also demonstrated a looser clot structure and more disrupted fibrin structures. In vivo, US + cMB + CDT contributed to a significantly higher vascular recanalization rate compared with CDT (87.50% versus 25.00%, P < .05).ConclusionsUS + cMB + CDT was more effective than US + bMB + CDT in thrombolysis, and ultrasound combined with continuous microbubble injection could enhance the thrombolytic efficacy of CDT.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3