Thunderstorm detection from GPM IMERG rainfall: Climatology of dynamical and thermodynamical processes over India

Author:

Sasanka Talukdar1ORCID,Priya Kumari1ORCID,Osuri Krishna K.1ORCID,Niyogi Dev23ORCID

Affiliation:

1. Department of Earth and Atmospheric Sciences National Institute of Technology Rourkela Rourkela India

2. Department of Earth and Planetary Sciences, Jackson School of Geosciences The University of Texas at Austin Austin Texas USA

3. Department of Civil, Architectural, and Environmental Engineering, Cockrell School of Engineering The University of Texas at Austin Austin Texas USA

Abstract

AbstractThis study aims to (i) prepare a premonsoon thunderstorms database, (ii) understand the thunderstorm frequency, duration and intensity and (iii) composite analysis of dynamic and thermodynamic processes related to thunderstorms over India. The thunderstorm associated rainfall varies across India. Hence, a percentile‐based approach is implemented with the integrated multi‐satellite retrievals for global precipitation measurement (IMERG) dataset at 0.1° resolution to identify thunderstorms for 2001–2021. The 93rd percentile appears to be better for thunderstorm detection, with a success ratio of 82% (642 events are confirmed out of 786 detected) in eastern India. Further analysis indicated that 84% of the detected thunderstorms in eastern and northeastern India are associated with lightning activity. Based on this long‐term (2001–2021) thunderstorm data, the highest frequency of thunderstorms (40–45 events·year−1) is observed over the western foothills of the Himalayas, the northeast region, and the west coast of Kerala. The thunderstorm duration in the eastern and northeastern regions and the southwest coast of India is mostly 0.5–2.5 h, producing heavy rainfall (>7 mm·h−1) due to more moisture content and stronger updrafts. The composite structure of thermodynamic indices exhibits significant spatial variations over India and can be used to differentiate the regions of high thunderstorm activity. The minimum (maximum) convective available potential energy (convective inhibition) value required for thunderstorm development is not uniform throughout the country. However, the composites of K index and total totals index during thunderstorms are mostly uniform. This study highlights the benefits of IMERG rainfall in thunderstorm detection over India and helps to understand the local forcings and the effect of thunderstorm activity on different sectors like aviation, agriculture and so forth.

Funder

Ministry of Earth Sciences

National Science Foundation

Publisher

Wiley

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3