Optimal control approach for moving bottom detection in one‐dimensional shallow waters by surface measurements

Author:

Lecaros R.1,López‐Ríos J.2ORCID,Montecinos G. I.3,Zuazua E.456

Affiliation:

1. Departamento de Matemática Universidad Técnica Federico Santa María Santiago Chile

2. Universidad Industrial de Santander, Escuela de Matemáticas Bucaramanga Colombia

3. Department of Mathematical Engineering Universidad de La Frontera Temuco Chile

4. Chair in Dynamics, Control and Numerics / Alexander von Humboldt‐Professorship, Department of Data Science Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany

5. Chair of Computational Mathematics, Fundación Deusto Bilbao Basque Country, Spain

6. Departamento de Matemáticas Universidad Autónoma de Madrid Madrid Spain

Abstract

We consider the Boussinesq‐Peregrine (BP) system as described by Lannes [Lannes, D. (2013). The water waves problem: mathematical analysis and asymptotics (Vol. 188). American Mathematical Soc.], within the shallow water regime, and study the inverse problem of determining the time and space variations of the channel bottom profile, from measurements of the wave profile and its velocity on the free surface. A well‐posedness result within a Sobolev framework for (BP), considering a time dependent bottom, is presented. Then, the inverse problem is reformulated as a nonlinear PDE‐constrained optimization one. An existence result of the minimum, under constraints on the admissible set of bottoms, is presented. Moreover, an implementation of the gradient descent approach, via the adjoint method, is considered. For solving numerically both, the forward (BP) and its adjoint system, we derive a universal and low‐dissipation scheme, which contains non‐conservative products. The scheme is based on the FORCE‐ method proposed in [Toro, E. F., Saggiorato, B., Tokareva, S., and Hidalgo, A. (2020). Low‐dissipation centred schemes for hyperbolic equations in conservative and non‐conservative form. Journal of Computational Physics, 416, 109545]. Finally, we implement this methodology to recover three different bottom profiles; a smooth bottom, a discontinuous one, and a continuous profile with a large gradient. We compare with two classical discretizations for (BP) and the adjoint system. These results corroborate the effectiveness of the proposed methodology to recover bottom profiles.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3