Affiliation:
1. Faculty of Mechanical Engineering and Mechanics Ningbo University Ningbo China
2. Institute of Advanced Energy storage and Equipment Ningbo University Ningbo China
Abstract
AbstractIn this paper, a novel air‐cooled supercapacitor thermal management system (STMS) based on the corner deflectors and the inclined inlet and outlet was proposed. The temperature and velocity fields were simulated and analyzed by CFD. Moreover, the heat dissipation effect of different STMSs was analyzed against each other. The results showed that the STMS proposed had a better heat dissipation effect when the inclined angle of inlet and outlet was appropriate, in which the maximum temperature (Tmax) and the maximum temperature difference (ΔTmax) of the module could be reduced by 10.3% and 34.6%. And it is shown that the structure with inclined inlet and outlet plays an important role for the heat dissipation capability of the STMS proposed. And it has experimentally proven its heat dissipation ability. Consequently, the impacts of inclined angle (α), monomer spacing (dc), and the distance between monomer and module shell (dx, dy, and dz) on the heat dissipation effect were deeply analyzed. For the STMS arranged in four rows and three columns, it had a better heat dissipation effect when inclined angle was in the range of 40° to 50°. The results showed that the structural parameters had a large influence on the Tmax and ΔTmax. Besides, it had shown that the temperature curves of the Tmax and ΔTmax had a main trend of “decreasing and then increasing” when the monomer spacing as well as the distance between monomer and module shell are taken from 1 mm to 5 mm. It implies that a small spacing (1 mm to 2 mm) will hinder the air circulation and reduce heat dissipation, and a large spacing (3 mm to 5 mm) will reduce the average flow rate of air and reduce the efficiency of heat transfer.
Funder
National Natural Science Foundation of China
Reference38 articles.
1. Research on supercapacitor's coupling of thermology and electrochemistry (in Chinese);Zhen M;J Power Sources,2016
2. Survey on supercapacitor thermal management system for rail transit (in Chinese);Fu X;J Power Sources,2019
3. Heat generation in double layer capacitors
4. Review of nonuniformity research and analysis on supercapacitor (in Chinese);Gu S;Proc CSEE,2015