Design and optimization of air‐cooled supercapacitor thermal management system based on the corner deflectors and the inclined inlet and outlet

Author:

Xu Chaoying1ORCID,Li Guofu12,Ruan Dianbo12

Affiliation:

1. Faculty of Mechanical Engineering and Mechanics Ningbo University Ningbo China

2. Institute of Advanced Energy storage and Equipment Ningbo University Ningbo China

Abstract

AbstractIn this paper, a novel air‐cooled supercapacitor thermal management system (STMS) based on the corner deflectors and the inclined inlet and outlet was proposed. The temperature and velocity fields were simulated and analyzed by CFD. Moreover, the heat dissipation effect of different STMSs was analyzed against each other. The results showed that the STMS proposed had a better heat dissipation effect when the inclined angle of inlet and outlet was appropriate, in which the maximum temperature (Tmax) and the maximum temperature difference (ΔTmax) of the module could be reduced by 10.3% and 34.6%. And it is shown that the structure with inclined inlet and outlet plays an important role for the heat dissipation capability of the STMS proposed. And it has experimentally proven its heat dissipation ability. Consequently, the impacts of inclined angle (α), monomer spacing (dc), and the distance between monomer and module shell (dx, dy, and dz) on the heat dissipation effect were deeply analyzed. For the STMS arranged in four rows and three columns, it had a better heat dissipation effect when inclined angle was in the range of 40° to 50°. The results showed that the structural parameters had a large influence on the Tmax and ΔTmax. Besides, it had shown that the temperature curves of the Tmax and ΔTmax had a main trend of “decreasing and then increasing” when the monomer spacing as well as the distance between monomer and module shell are taken from 1 mm to 5 mm. It implies that a small spacing (1 mm to 2 mm) will hinder the air circulation and reduce heat dissipation, and a large spacing (3 mm to 5 mm) will reduce the average flow rate of air and reduce the efficiency of heat transfer.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Reference38 articles.

1. Research on supercapacitor's coupling of thermology and electrochemistry (in Chinese);Zhen M;J Power Sources,2016

2. Survey on supercapacitor thermal management system for rail transit (in Chinese);Fu X;J Power Sources,2019

3. Heat generation in double layer capacitors

4. Review of nonuniformity research and analysis on supercapacitor (in Chinese);Gu S;Proc CSEE,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3