Fabrication of bone tissue engineering scaffolds with a hierarchical structure using combination of 3D printing/gas foaming techniques

Author:

Aghaiee Soroush1,Azdast Taher1ORCID,Hasanzadeh Rezgar1,Farhangpazhouh Farhad2

Affiliation:

1. Department of Mechanical Engineering Urmia University Urmia Iran

2. Central Laboratory Urmia University Urmia Iran

Abstract

AbstractThe goal of this research was to study and optimize the structure and geometric features of scaffolds made using a combined method of 3D printing and gas foaming. This endeavor aimed to produce scaffolds with a hierarchical structure that closely resemble bone tissue. The study examined the effects of saturation pressure, foam temperature, and foam time on the scaffolds using response surface methodology (RSM). RSM is statistical technique used for optimizing and analyzing processes by modeling relationship between input variables and output responses. The results of multi‐objective optimization showed that highest pressure (55 MPa), the shortest time (40 s), and the temperature of 68°C were the optimal conditions. RSM was also used to develop mathematical models of structural properties, dimensional accuracy, and mechanical strength, focusing on different foam parameters, which could be used to predict desired properties. Subsequently, the designed scaffold underwent MTT assay testing to assess cell toxicity indicating its biocompatibility. The results demonstrate that by using the correct foam parameters in combination with 3D printing, it is possible to achieve polymer scaffolds with proportional dimensions, geometry, and mechanical strength suitable for cell growth to use inside the human body.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3