Poly(butylene terephthalate)/poly(ethylene glycol) blends with compatibilizers

Author:

Lee Hayeong1,Lee Tae‐Hee1,Kim Hyungsu2,Jang Keon‐Soo1ORCID

Affiliation:

1. Department of Polymer Engineering, School of Chemical and Materials Engineering The University of Suwon Hwaseong Gyeonggi‐do Republic of Korea

2. Department of Chemical Engineering Dankook University Yongin Gyeonggi Republic of Korea

Abstract

AbstractPolymer blend systems offer a versatile approach for tailoring the properties of polymer materials for specific applications. In this study, we investigated the compatibility of polybutylene terephthalate (PBT) and poly(ethylene glycol) (PEG) blends processed using a twin‐screw extruder, with the aim of enhancing their compatibility. Phthalic anhydride (PAn) and phthalic acid (PAc) were used as potential compatibilizers at different concentrations to improve interfacial interactions between PBT and PEG. Blend morphologies were characterized using scanning electron microscopy, which revealed improved interfacial compatibility and reduced phase separation with the incorporation of small amounts of PAn and PAc. Differential scanning calorimetry analysis indicated changes in the melting temperature (Tm) and glass transition temperature (Tg) of the blends owing to the compatibilizing effects of PAn and PAc. Dynamic mechanical analysis further corroborated the influence of the compatibilizers on the Tg and viscoelastic behavior. Thermogravimetric analysis demonstrated enhanced thermal stability with the addition of either PAn or PAc. Rheological measurements indicated an increase in complex viscosity with increasing compatibilizer content, indicating improved compatibility. The degradation point (Td) of PBT/PEG blend increased from 158 to 200 and 319°C with the incorporation of 5 phr PAn and 2 phr PAc, respectively. Mechanical properties, including tensile strength, Young's modulus, and Izod impact strength, were evaluated. For instance, the tensile strength of PBT/PEG blend was enhanced from 43.5 to 48.7 and 49.7 MPa by incorporating 5 phr PAn and 2 phr PAc, respectively. However, the impact strength of PBT/PEG blend increased from 3.0 to 4.3 and 4.2 kJ/m2 with the addition of 1 phr PAn and 1 phr PAc, respectively. The findings demonstrated that adding 5 phr PAn or 2 phr PAc to the PBT/PEG blends was advantageous, achieving a harmony of performance benefits and compromises. Rheological observations contributed significantly to the mechanical and thermal properties. Overall, the study highlights the significance of utilizing PAn and PAc as effective compatibilizers for enhancing the properties of PBT/PEG blends, making them potential candidates for various applications.

Funder

Ministry of Trade, Industry and Energy

Ministry of Science and ICT, South Korea

Ministry of SMEs and Startups

Korea Evaluation Institute of Industrial Technology

Ministry of Education, Science and Technology

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3