A projection‐domain correction method in CBCT reconstruction for head and neck radiotherapy using cycle‐GAN and nonlocal means filter

Author:

Wei Ran12,Liu Yuxiang1,Chen Xinyuan12,Zhu Ji1,Yang Bining1,Men Kuo1,Dai Jianrong1

Affiliation:

1. National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China

2. National Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer Hospital Chinese Academy of Medical Sciences Langfang China

Abstract

AbstractBackgroundIn radiation treatments for head and neck tumors, cone‐beam computed tomography (CBCT) is employed for patient positioning and dose calculation of adaptive radiotherapy. However, the quality of CBCT is degraded by the scatter and noise, majorly impacting the accuracy of patient positioning and dose calculation.PurposeTo improve the quality of CBCT for patients with head and neck cancer, a projection‐domain CBCT correction method was proposed using a cycle‐consistent generative adversarial network (cycle‐GAN) and a nonlocal means filter (NLMF) based on a reference digitally reconstructed radiograph (DRR).MethodsA cycle‐GAN was initially trained to learn mapping from CBCT projections to a DRR using the data obtained from 30 patients. For each patient, 671 CBCT projections were measured for CBCT reconstruction. Moreover, 360 Digital Reconstructed Radiographs (DRR) were computed from each patient's planning computed tomography (CT), whose projection angles ranged from 0° to 359° with an interval of 1°. By applying the trained generator of the cycle‐GAN to the unseen CBCT projection, a synthetic DRR with considerably less scatter was obtained. However, annular artifacts were observed in the CBCT reconstructed with synthetic DRR. To address this issue, a NLMF based on reference DRR was used to further correct the synthetic DRR, which corrected the synthetic DRR using the calculated DRR as a reference image. Finally, the CBCT with no annular artifact and little noise was reconstructed with the corrected synthetic DRR. The proposed method was tested using the data of six patients. The corrected synthetic DRR and CBCT were compared with the corresponding real DRR and CT images. The structural preservation ability of the proposed method was evaluated using the Dice coefficients of the automatically extracted nasal cavity. Moreover, the image quality of CBCT corrected with the proposed method was objectively assessed with an five‐point human scoring system and compared with CT, original CBCT and CBCT corrected with other strategies.ResultsThe mean absolute value (MAE) of the relative error between the corrected synthetic and real DRR was <8%. The MAE between the corrected CBCT and corresponding CT was <30 HU. Moreover, the Dice coefficient of nasal cavity between the corrected CBCT image and the original image exceeded 98.8 for all the patients. Last but not least, the objective assessment of image quality showed the proposed method had an average score of 4.2 in overall image quality, which was higher than that of the original CBCT, CBCT reconstructed with synthetic DRR, and CBCT reconstructed with projections filtered with NLMF only.ConclusionsThe proposed method can considerably improve the CBCT image quality with little anatomical distortion, improving the accuracy of radiotherapy for head and neck patients.

Funder

National Natural Science Foundation of China

Beijing Nova Program

Publisher

Wiley

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non‐coplanar CBCT image reconstruction using a generative adversarial network for non‐coplanar radiotherapy;Journal of Applied Clinical Medical Physics;2024-08-26

2. Gallatic pallet: A review over the deep learning methods for colorization.;2023 6th International Conference on Recent Trends in Advance Computing (ICRTAC);2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3