Exposure to Polypropylene Microplastics Causes Cardiomyocyte Apoptosis Through Oxidative Stress and Activation of the MAPK‐Nrf2 Signaling Pathway

Author:

Lu Tao1,Yuan Xiaoqing1,Sui Changbai2,Yang Chen1,Li Desheng1,Liu Huan1,Zhang Guanqing1,Li Guozhi1,Li Song1,Zhang Jiayu1,Zhou Ling1,Xu Maolei1

Affiliation:

1. The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine School of Pharmacy Binzhou Medical University YanTai ShanDong China

2. Department of Neurology Yantaishan Hospital, Affiliated to Binzhou Medical University YanTai ShanDong China

Abstract

ABSTRACTMicroplastics are a growing concern as pollutants that impact both public health and the environment. However, the toxic effects of polypropylene microplastics (PP‐MPs) are not well understood. This study aimed to investigate the effects of PP‐MPs on cardiotoxicity and its underlying mechanisms. The cardiotoxicity of exposure to different amounts of PP‐MPs were investigated in both ICR mice and H9C2 cells. Our results demonstrated that sub‐chronic exposure to 5 and 50 mg/L PP‐MPs led to myocardial structural damage, apoptosis, and fibrosis in mice cardiomyocytes. Flow cytometry analysis revealed that PP‐MPs could decrease mitochondrial membrane potential and induce apoptosis in H9C2 cells. Western blotting revealed decreased expression of Bcl‐2, poly(ADP‐ribose) polymerase (PARP) and caspase 3 and increased expression of Bax, cleaved‐PARP, and cleaved‐caspase 3 in PP‐MPs‐treated cardiac tissue and H9C2 cells. These results confirmed the apoptotic effects induced by PP‐MPs. Moreover, PP‐MPs treatment triggered oxidative stress, as evidenced by the increased levels of malondialdehyde; reduction in glutathione peroxidase, superoxide dismutase, and catalase activities in mice cardiac tissues; and increased reactive oxygen species levels in H9C2 cells. Finally, western blotting demonstrated that exposure to PP‐MPs significantly reduced the expression levels of Nrf2 and p‐ERK proteins associated with MAPK‐Nrf2 pathway in both cardiac tissue and H9C2 cells. Overall, our findings indicate that PP‐MPs can induce cardiomyocyte apoptosis through MAPK‐Nrf2 signaling pathway, which is triggered by oxidative stress. This study provides a foundation for determining the effects of PP‐MPs on cardiotoxicity and their underlying mechanisms.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3