Firefly optimized neural network‐based trajectory tracking control of partially unknown multiplayer nonlinear systems

Author:

Wu Qiuye1,Zhao Bo2ORCID,Liu Derong34

Affiliation:

1. School of Public Security and Traffic Management Guangdong Police College Guangzhou China

2. School of Systems Science Beijing Normal University Beijing China

3. School of System Design and Intelligent Manufacturing Southern University of Science and Technology Shenzhen China

4. Department of Electrical and Computer Engineering University of Illinois Chicago Chicago Illinois USA

Abstract

AbstractIn this paper, we develop an integral reinforcement learning (IRL)‐based trajectory tracking control (TTC) scheme via firefly optimized neural networks for partially unknown multiplayer nonlinear systems. Under the developed TTC scheme, IRL is proved to be equivalent to the classical policy iteration, which guarantees the convergence of the IRL algorithm. By implementing the IRL method, the requirement of the drift dynamics is obviated. The TTC policy for each player is obtained by solving the coupled Hamilton–Jacobi equation with a critic neural network, whose weight vector is tuned by the firefly algorithm. The tracking error of the closed‐loop system is guaranteed to be stable via the Lyapunov's direct method. Simulation results illustrate the effectiveness and superiority of the present IRL‐based TTC scheme, and show that the success rate of system operation is increased by introducing the firefly algorithm.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3