Modelling the incremental value of personality facets: the domains-incremental facets-acquiescence bifactor showmodel

Author:

Danner Daniel1,Lechner Clemens M.2,Soto Christopher J.3,John Oliver P.4

Affiliation:

1. University of Applied Labour Studies, Mannheim, Germany

2. GESIS – Leibniz-Institute for the Social Sciences, Mannheim, Germany

3. Colby College, Waterville, ME USA

4. University of California, Berkeley, CA USA

Abstract

Personality can be described at different levels of abstraction. Whereas the Big Five domains are the dominant level of analysis, several researchers have called for more fine-grained approaches, such as facet-level analysis. Personality facets allow more comprehensive descriptions, more accurate predictions of outcomes, and a better understanding of the mechanisms underlying trait–outcome relationships. However, several methodological issues plague existing evidence on the added value of facet-level descriptions: Manifest facet scale scores differ with respect to their reliability, domain-level variance (variance that is due to the domain factor) and incremental facet-level variance (variance that is specific to a facet and not shared with the other facets). Moreover, manifest scale scores overlap substantially, which affects associations with criterion variables. We suggest a structural equation modelling approach that allows domain-level variance to be separated from incremental facet-level variance. We analysed data from a heterogeneous sample of adults in the USA (N = 1193) who completed the 60-item Big Five Inventory-2. The results illustrate how the variance of manifest personality items and scale scores can be decomposed into domain-level and incremental facet-level variance. The association with criterion variables (educational attainment, income, health, and life satisfaction) further demonstrates the incremental predictive power of personality facets.

Publisher

SAGE Publications

Subject

Social Psychology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3